Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 83, Issue 2

Issues

Atomic weights of the elements 2009 (IUPAC Technical Report)

Michael E. Wieser
  • Corresponding author
  • Department of Physics and Astronomy, University of Calgary, Calgary, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tyler B. Coplen
Published Online: 2010-12-12 | DOI: https://doi.org/10.1351/PAC-REP-10-09-14

The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 11 elements. Many atomic weights are not constants of nature, but depend upon the physical, chemical, and nuclear history of the material. The standard atomic weights of 10 elements having two or more stable isotopes have been changed to reflect this variability of atomic-weight values in natural terrestrial materials. To emphasize the fact that these standard atomic weights are not constants of nature, each atomic-weight value is expressed as an interval. The interval is used together with the symbol [a; b] to denote the set of atomic-weight values, Ar(E), of element E in normal materials for which aAr(E) ≤ b. The symbols a and b denote the bounds of the interval [a; b]. The revised atomic weight of hydrogen, Ar(H), is [1.007 84; 1.008 11] from 1.007 94(7); lithium, Ar(Li), is [6.938; 6.997] from 6.941(2); boron, Ar(B), is [10.806; 10.821] from 10.811(7); carbon, Ar(C), is [12.0096; 12.0116] from 12.0107(8); nitrogen, Ar(N), is [14.006 43; 14.007 28] from 14.0067(2); oxygen, Ar(O), is [15.999 03; 15.999 77] from 15.9994(3); silicon, Ar(Si), is [28.084; 28.086] from 28.0855(3); sulfur, Ar(S), is [32.059; 32.076] from 32.065(2); chlorine, Ar(Cl), is [35.446; 35.457] from 35.453(2); and thallium, Ar(Tl), is [204.382; 204.385] from 204.3833(2). This fundamental change in the presentation of the atomic weights represents an important advance in our knowledge of the natural world and underscores the significance and contributions of chemistry to the well-being of humankind in the International Year of Chemistry 2011. The standard atomic weight of germanium, Ar(Ge), was also changed to 72.63(1) from 72.64(1).

Keywords: atomic-weight interval; atomic-weight range; boron; carbon; chlorine; conventional atomic-weight values; germanium; half-lives; hydrogen; IUPAC Inorganic Chemistry Division; lithium; nitrogen; oxygen; silicon; sulfur; thallium

Project Year: 2007, Project Code: 2007-028-1-200

References

  • 1

    F. W. Clarke. “The Constants of Nature, Part 5. Recalculation of the Atomic Weights”, Smithsonian Misc. Publ. 441 i–xiv, 1–259 (1882).Google Scholar

  • 2

    , Sixth Report of the American Chemical Society Committee on Atomic Weights, J. Am. Chem. Soc. 21, 200 (1898).CrossrefGoogle Scholar

  • 3

    , N. E. Holden. Pure Appl. Chem. 52, 2349 (1980).CrossrefGoogle Scholar

  • 4

    , M. E. Wieser, M. Berglund. Pure Appl. Chem. 81, 2131 (2009).CrossrefGoogle Scholar

  • 5

    , H. S. Peiser, N. E. Holden, P. De Bièvre, I. L. Barnes, R. Hagemann, J. R. De Laeter, T. J. Murphy, E. Roth, M. Shima, H. G. Thode. Pure Appl. Chem. 56, 695 (1984).CrossrefGoogle Scholar

  • 6

    , J. R. De Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, P. D. P. Taylor. Pure Appl. Chem. 75, 683 (2003).CrossrefGoogle Scholar

  • 7

    , M. Berglund, M. E. Wieser. Pure Appl. Chem. 83, 397 (2011).CrossrefGoogle Scholar

  • 8

    IUPAC. Assessment of fundamental understanding of isotopic abundances and atomic weights of the chemical elements (IUPAC Project #2006-025-1-200 <http://www.iupac.org/web/ins/2006-025-1-200/>).Google Scholar

  • 9

    , G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A 729, 337 (2003).CrossrefGoogle Scholar

  • 10

    CIAAW. <http://www.ciaaw.org/atomic_weights9.htm>.Google Scholar

  • 11

    CIAAW. <http://www.ciaaw.org/atomic_weights8.htm>.Google Scholar

  • 12

    , IUPAC. Pure Appl. Chem. 18, 569 (1969).CrossrefGoogle Scholar

  • 13

    , P. De Bièvre. Z. Anal. Chem. 264, 365 (1973).CrossrefGoogle Scholar

  • 14

    , T. B. Coplen, J. K. Böhlke, P. De Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. M. Révész, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke Jr., Y. K. Xiao. Pure Appl. Chem. 74, 1987 (2002).CrossrefGoogle Scholar

  • 15

    T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke, Jr., K. M. Révész, A. Lamberty, P. Taylor, P. De Bièvre. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents: U.S. Geological Survey Water-Resources Investigations Report 01-4222, p. 98, USGS, Washington, DC (2001).Google Scholar

  • 16

    IUPAC. Evaluation of isotopic abundance variations in selected heavier elements (IUPAC Project # 2007-029-1-200 <http://www.iupac.org/web/ins/2007-029-1-200>).Google Scholar

  • 17

    IUPAC. Evaluation of radiogenic abundance variations in selected elements (IUPAC Project #2009-023-1-200 <http://www.iupac.org/web/ins/2009-023-1-200>).Google Scholar

  • 18

    , IUPAC. Pure Appl. Chem. 66, 2423 (1994).CrossrefGoogle Scholar

  • 19

    , P. D. P. Taylor, R. Maeck, P. De Bièvre. Int. J. Mass Spectrom. Ion Processes 121, 111 (1992).CrossrefGoogle Scholar

  • 20

    T.-L. Chang, W.-Li. Chin. Sci. Bull. 35, 290 (1990).Google Scholar

  • 21

    BIPM. International Vocabulary of Basic and General Terms in Metrology (VIM), 3rd ed., Bureau International des Poids et Mesure, Geneva (2008); <http://www.bipm.org/en/publications/guides/ vim.html>.Google Scholar

  • 22

    , M. Elvert, E. Suess, J. Greinert, M. J. Whiticar. Org. Geochem. 31, 1175 (2000).CrossrefGoogle Scholar

  • 23

    , T. B. Coplen, H. S. Peiser. Pure Appl. Chem. 70, 237 (1998).CrossrefGoogle Scholar

  • 24a

    , F. W. Clarke. J. Am. Chem. Soc. 16, 179 (1894).CrossrefGoogle Scholar

  • 24b

    , F. W. Clarke. J. Am. Chem. Soc. 17, 201 (1895).CrossrefGoogle Scholar

  • 24c

    , F. W. Clarke. J. Am. Chem. Soc. 18, 197 (1896).CrossrefGoogle Scholar

  • 24d

    , F. W. Clarke. J. Am. Chem. Soc. 19, 359 (1897).CrossrefGoogle Scholar

  • 24e

    , F. W. Clarke. J. Am. Chem. Soc. 20, 163 (1898).CrossrefGoogle Scholar

  • 24f

    , F. W. Clarke. J. Am. Chem. Soc. 21, 200 (1899).CrossrefGoogle Scholar

  • 24g

    , F. W. Clarke. J. Am. Chem. Soc. 22, 70 (1900).CrossrefGoogle Scholar

  • 25

    IUPAC. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 (the “Red Book”). Prepared for publication by N. Connelly, T. Damhus, R. M. Harshorn, RSC Publishing, Cambridge, UK (2005).Google Scholar

  • 26

    R. M. Coveney Jr., E. D. Goebel, E. J. Zeller, G. A. M. Dreschhoff, E. E. Angino. Bull. Am. Assoc. Pet. Geol. 71, 39 (1987).Google Scholar

  • 27

    , M. Butzenlechner, A. Rossmann, H.-L. Schmidt. J. Agric. Food Chem. 37, 410 (1989).CrossrefGoogle Scholar

  • 28

    , N. E. Holden, R. L. Martin. Pure Appl. Chem. 55, 1101 (1983).CrossrefGoogle Scholar

  • 29

    , R. Hagemann, G. Nief, E. Roth. Tellus 22, 712 (1970).CrossrefGoogle Scholar

  • 30

    , H. P. Qi, P. D. P. Taylor, M. Berglund, P. De Bièvre. Int. J. Mass Spectrom. Ion Processes 171, 263 (1997).CrossrefGoogle Scholar

  • 31

    , H. P. Qi, T. B. Coplen, Q. Zh. Wang, Y. H. Wang. Anal. Chem. 69, 4076 (1997).CrossrefGoogle Scholar

  • 32

    , N. E. Holden, R. L. Martin. Pure Appl. Chem. 56, 653 (1984).CrossrefGoogle Scholar

  • 33

    P. J. De Bièvre, G. H. Debus. Int. J. Mass Spectrom. Ion Phys. 49, 265 (1983).Google Scholar

  • 34

    G. Wang, Y. K. Xiao. Rock Miner. Anal. 19, 169 (2000).Google Scholar

  • 35

    , A. Vengosh, A. R. Chivas, M. T. McCulloch, A. Starinsky, Y. Kolodny. Geochim. Cosmochim. Acta 55, 2591 (1991).CrossrefGoogle Scholar

  • 36

    , T. B. Coplen. Pure Appl. Chem. 68, 2339 (1996).CrossrefGoogle Scholar

  • 37

    , P. De Bièvre, G. H. Debus. Int. J. Mass Spectrom. Ion Phys. 2, 15 (1969).CrossrefGoogle Scholar

  • 38

    , M. Elvert, E. Suess, J. Greinert, M. J. Whiticar. Org. Geochem. 31, 1175 (2000).CrossrefGoogle Scholar

  • 39

    G. E. Claypool, C. N. Threlkeld, P. N. Mankiewicz, M. A. Arthur, T. F. Anderson. Initial Reports of the Deep Sea Drilling Project 84, 683 (1995).Google Scholar

  • 40

    , E. Wada, R. Shibata, T. Torii. Nature 292, 327 (1981).CrossrefGoogle Scholar

  • 41

    , T. B. Coplen. Pure Appl. Chem. 73, 667 (2001).CrossrefGoogle Scholar

  • 42

    , G. Junk, H. J. Svec. Geochim. Cosmochim. Acta 14, 234 (1958).CrossrefGoogle Scholar

  • 43

    , P. Baertschi. Earth Planet. Sci. Lett. 31, 341 (1976).CrossrefGoogle Scholar

  • 44

    W.-Li, D. Jin, T.-L. Chang. Kexue Tinboa 33, 1610 (1988).Google Scholar

  • 45

    , L. Aldaz, S. Deutsch. Earth Planet. Sci. Lett. 3, 267 (1967).CrossrefGoogle Scholar

  • 46

    , T. Yoshinari, M. A. Altabet, S. W. A. Naqvi, L. Codispoti, A. Jayakumar, M. Kuhland, A. Devol. Mar. Chem. 56, 253 (1997).CrossrefGoogle Scholar

  • 47

    , IUPAC. Pure Appl. Chem. 21, 91 (1970).CrossrefGoogle Scholar

  • 48

    , I. Basile-Doelsch, J. D. Meunier, C. Parron. Nature 433, 399 (2005).CrossrefGoogle Scholar

  • 49

    , T. P. Ding, G. R. Ma, M. X. Shui, D. F. Wan, R. H. Li. Chem. Geol. 218, 41 (2005).CrossrefGoogle Scholar

  • 50

    , R. Gonfiantini, P. De Bièvre, S. Valkiers, P. D. P. Taylor. IEEE Trans Instrum. Meas. 46, 566 (1997).CrossrefGoogle Scholar

  • 51

    , IUPAC. Pure Appl. Chem. 47, 75 (1976).CrossrefGoogle Scholar

  • 52

    I. L. Barnes, L. J. Moore, L. A. Machlan, T. J. Murphy, W. R. Shields. J. Res. Natl. Bur. Stand. (U.S.) 79A, 727 (1975).Google Scholar

  • 53

    , M. D. Rudnicki, H. Elderfield, B. Spiro. Geochim. Cosmochim. Acta 65, 777 (2001).CrossrefGoogle Scholar

  • 54

    , T. Ding, S. Valkiers, H. Kipphardt, R. Damen, P. De Bièvre, P. D. P. Taylor, R. Gonfiantini, H. R. Krouse. Geochim. Cosmochim. Acta 65, 2433 (2001).CrossrefGoogle Scholar

  • 55

    , J. K. Böhlke, N. C. Sturchio, B. Gu, J. Horita, G. M. Brown, W. A. Jackson, J. Batista, P. B. Hatzinger. Anal. Chem. 77, 7838 (2005).CrossrefGoogle Scholar

  • 56

    , A. J. Magenheim, A. J. Spivack, P. J. Michael, J. M. Gieskes. Earth Planet. Sci. Lett. 131, 427 (1995).CrossrefGoogle Scholar

  • 57

    , W. R. Shields, T. J. Murphy, E. L. Garner, V. H. Dibeler. J. Am. Chem. Soc. 84, 1519 (1961).CrossrefGoogle Scholar

  • 58

    , A. Smakula, J. Kalnajs. Phys. Rev. 99, 1737 (1955).CrossrefGoogle Scholar

  • 59

    , A. Smakula, V. Sils. Phys. Rev. 99, 1744 (1955).CrossrefGoogle Scholar

  • 60

    , A. Smakula, J. Kalnajs, V. Sils. Phys. Rev. 99, 1747 (1955).CrossrefGoogle Scholar

  • 61

    H. Kipphardt, S. Valkiers, F. Hendrickx, P. De Bièvre, P. D. P. Taylor, G. Tölg. Int. J. Mass Spectrom. 189, 27 (1999).Google Scholar

  • 62

    T.-L. Chang, W.-J. Li, G.-S Qiao, Q.-Y. Qian, Z.-Y Chu. Int. J. Mass Spectrom. 189, 205 (1999).Google Scholar

  • 63

    , M. Rehkämper, M. Frank, J. R. Hein, A. N. Halliday. Earth Planet. Sci. Lett. 219, 77 (2004).CrossrefGoogle Scholar

  • 64

    , R. G. A. Baker, M. Rehkämper, T. K. Hinkley, S. G. Nielsen, J. P. Toutain. Geochim. Cosmochim. Acta 73, 6340 (2009).CrossrefGoogle Scholar

  • 65

    , IUPAC. Pure Appl. Chem. 58, 1677 (1986).CrossrefGoogle Scholar

  • 66

    L. P. Dunstan, J. W. Gramlich, I. L. Barnes, W. C. Purdy. J. Res. Natl. Bur. Stand. (U.S.) 85, 1 (1980).CrossrefGoogle Scholar

About the article

Published Online: 2010-12-12

Published in Print: 2010-12-12


Citation Information: Pure and Applied Chemistry, Volume 83, Issue 2, Pages 359–396, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-REP-10-09-14.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tamisra Pal, Constantin Beck, Dominik Lessnich, and Michael Vogel
The Journal of Physical Chemistry C, 2017
[2]
Ren Thomas C. Marquez, Maria Luisa G. Tejada, Katsuhiko Suzuki, Alyssa M. Peleo-Alampay, Kosuke T. Goto, Sangmin Hyun, and Ryoko Senda
Marine Geology, 2017
[4]
Carlos F. R. A. C. Lima, Ana S. M. C. Rodrigues, and Luís M. N. B. F. Santos
The Journal of Physical Chemistry A, 2017, Volume 121, Number 12, Page 2475
[5]
Tyler B. Coplen, Fabienne Meyers, and Norman E. Holden
Journal of Chemical Education, 2017, Volume 94, Number 3, Page 311
[6]
M. J. Assael, I. A. Koini, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins
Journal of Physical and Chemical Reference Data, 2012, Volume 41, Number 2, Page 023104
[7]
Snorre Foss Westman, H.G. Jacob Stang, Sigurd W. Løvseth, Anders Austegard, Ingrid Snustad, and Ivar S. Ertesvåg
Fluid Phase Equilibria, 2016, Volume 421, Page 67
[8]
P M C Rourke
Metrologia, 2016, Volume 53, Number 2, Page L1
[9]
J. Wieczorek, A. Eschenlohr, B. Weidtmann, M. Rösner, N. Bergeard, A. Tarasevitch, T. O. Wehling, and U. Bovensiepen
Physical Review B, 2015, Volume 92, Number 17
[10]
Jürgen Claesen, Frederik Lermyte, Frank Sobott, Tomasz Burzykowski, and Dirk Valkenborg
Analytical Chemistry, 2015, Volume 87, Number 21, Page 10747
[11]
Snorre Foss Westman, H.G. Jacob Stang, Sigurd W. Løvseth, Anders Austegard, Ingrid Snustad, Sigmund Ø. Størset, and Ivar S. Ertesvåg
Fluid Phase Equilibria, 2016, Volume 409, Page 207
[12]
F. Farina Arboccò, P. Vermaercke, K. Smits, L. Sneyers, and K. Strijckmans
Journal of Radioanalytical and Nuclear Chemistry, 2014, Volume 302, Number 1, Page 721
[13]
F. Farina Arboccò, P. Vermaercke, K. Smits, L. Sneyers, and K. Strijckmans
Journal of Radioanalytical and Nuclear Chemistry, 2014, Volume 302, Number 1, Page 655
[14]
A Pirri, M Vannini, V Babin, M Nikl, and G Toci
Journal of Physics: Conference Series, 2014, Volume 497, Page 012009
[15]
Adriaan M H van der Veen and Katarina Hafner
Metrologia, 2014, Volume 51, Number 1, Page 80
[16]
Weiyang Ge, Hanxiao Liang, Jie Ma, Guoqiang Xie, Wenlan Gao, Peng Yuan, Liejia Qian, Xiaodong Xu, and Jun Xu
Optics Express, 2014, Volume 22, Number 3, Page 2423
[18]
Vera L. S. Freitas, José R. B. Gomes, and Maria D. M. C. Ribeiro da Silva
Journal of Chemical & Engineering Data, 2014, Volume 59, Number 2, Page 312
[19]
Oliver Brendel
Rapid Communications in Mass Spectrometry, 2014, Volume 28, Number 4, Page 370
[20]
Brett F. Thornton and Shawn C. Burdette
Nature Chemistry, 2013, Volume 5, Number 12, Page 979
[21]
Vishwanath P. Singh and N.M. Badiger
Annals of Nuclear Energy, 2014, Volume 64, Page 301
[22]
Toshiaki Asakai and Akiharu Hioki
Analytical Methods, 2013, Volume 5, Number 21, Page 6240
[23]
Irina A. Letyanina, Alexey V. Markin, Natalia N. Smirnova, Semen S. Sologubov, and Vladimir V. Sharutin
Journal of Chemical & Engineering Data, 2013, Volume 58, Number 11, Page 3087
[24]
Ernesto R. Verni, Franco Moyano, Luis D. Martinez, Alicia V. Lapierre, and Raúl A. Gil
Journal of Analytical Atomic Spectrometry, 2013, Volume 28, Number 10, Page 1655
[25]
Marisa A. A. Rocha, João A. P. Coutinho, and Luís M. N. B. F. Santos
The Journal of Chemical Physics, 2013, Volume 139, Number 10, Page 104502
[26]
Luísa M. P. F. Amaral, Tânia M. T. de Carvalho, Joana I. T. A. Cabral, Maria D. M. C. Ribeiro da Silva, and Manuel A. V. Ribeiro da Silva
Journal of Thermal Analysis and Calorimetry, 2014, Volume 115, Number 1, Page 803
[27]
A Pirri, M Vannini, V Babin, M Nikl, and G Toci
Laser Physics, 2013, Volume 23, Number 9, Page 095002
[28]
J. L. Steeb, D. G. Graczyk, Y. Tsai, C. J. Mertz, A. M. Essling, V. S. Sullivan, K. P. Carney, M. R. Finck, J. J. Giglio, and D. B. Chamberlain
Journal of Analytical Atomic Spectrometry, 2013, Volume 28, Number 9, Page 1493
[30]
Tiago L. P. Galvão, Inês M. Rocha, Maria D. M. C. Ribeiro da Silva, and Manuel A. V. Ribeiro da Silva
The Journal of Physical Chemistry A, 2013, Volume 117, Number 28, Page 5826
[31]
Inês M. Rocha, Maria D.M.C. Ribeiro da Silva, and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 65, Page 204
[32]
Ricardo G. Simões, Carlos E. S. Bernardes, and Manuel E. Minas da Piedade
Crystal Growth & Design, 2013, Volume 13, Number 7, Page 2803
[33]
Ana Filipa L. O. M. Santos and Manuel A. V. Ribeiro da Silva
Structural Chemistry, 2013, Volume 24, Number 6, Page 1981
[34]
Ricardo G. Simões, Carlos E. S. Bernardes, Hermínio P. Diogo, Filipe Agapito, and Manuel E. Minas da Piedade
Molecular Pharmaceutics, 2013, Volume 10, Number 7, Page 2713
[35]
Ana Filipa L. O. M. Santos and Manuel A. V. Ribeiro da Silva
The Journal of Physical Chemistry A, 2013, Volume 117, Number 24, Page 5195
[36]
Luísa M.P.F. Amaral, Piotr Szterner, and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 64, Page 187
[37]
Vera L. S. Freitas, José R. B. Gomes, and Maria D. M. C. Ribeiro da Silva
Structural Chemistry, 2013, Volume 24, Number 6, Page 1923
[38]
Inês M. Rocha, Tiago L. P. Galvão, Maria D. M. C. Ribeiro da Silva, and Manuel A. V. Ribeiro da Silva
Structural Chemistry, 2013, Volume 24, Number 6, Page 1935
[39]
Inês M. Rocha, Tiago L. P. Galvão, Erlin Sapei, Maria D. M. C. Ribeiro da Silva, and Manuel A. V. Ribeiro da Silva
Journal of Chemical & Engineering Data, 2013, Volume 58, Number 6, Page 1813
[40]
Ana S.M.C. Rodrigues, Marisa A.A. Rocha, and Luís M.N.B.F. Santos
The Journal of Chemical Thermodynamics, 2013, Volume 63, Page 78
[41]
Ana L. R. Silva, Álvaro Cimas, and Maria D. M. C. Ribeiro da Silva
Structural Chemistry, 2013, Volume 24, Number 6, Page 1863
[42]
Ryosuke Taniki, Naoki Kenmochi, Kazuhiko Matsumoto, and Rika Hagiwara
Journal of Fluorine Chemistry, 2013, Volume 149, Page 112
[43]
Masaharu Tanimizu, Yoshiki Sohrin, and Takafumi Hirata
Analytical and Bioanalytical Chemistry, 2013, Volume 405, Number 9, Page 2771
[44]
P.P.M. Steur, Jin Seog Kim, D. Giraudi, and F. Pavese
The Journal of Chemical Thermodynamics, 2013, Volume 60, Page 87
[45]
Ana I.M.C. Lobo Ferreira and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 59, Page 94
[46]
Ana R.R.P. Almeida, Manuel J.S. Monte, M. Agostinha R. Matos, and Victor M.F. Morais
The Journal of Chemical Thermodynamics, 2013, Volume 59, Page 222
[47]
Bing Xia, Duoduo Bao, Srigokul Upadhyayula, Guilford Jones, and Valentine I. Vullev
The Journal of Organic Chemistry, 2013, Volume 78, Number 5, Page 1994
[48]
Willi A. Brand
Analytical and Bioanalytical Chemistry, 2013, Volume 405, Number 9, Page 2755
[49]
Luísa M.P.F. Amaral, Ana Filipa L.O.M. Santos, Maria das Dores M.C. Ribeiro da Silva, and Rafael Notario
The Journal of Chemical Thermodynamics, 2013, Volume 58, Page 315
[50]
Manuel A.V. Ribeiro da Silva, Maria D.M.C. Ribeiro da Silva, Ana I.M.C. Lobo Ferreira, Quan Shi, Brian F. Woodfield, and Robert N. Goldberg
The Journal of Chemical Thermodynamics, 2013, Volume 58, Page 20
[51]
Ana Filipa L.O.M. Santos and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 57, Page 454
[52]
Ana L.R. Silva, Álvaro Cimas, Nuno Vale, Paula Gomes, Manuel J.S. Monte, and Maria D.M.C. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 58, Page 158
[53]
Ana Filipa L.O.M. Santos, Luísa M.P.F. Amaral, Maria das Dores M.C. Ribeiro da Silva, María Victoria Roux, and Rafael Notario
The Journal of Chemical Thermodynamics, 2013, Volume 58, Page 29
[54]
Hai-Zhen Wei, Shao-Yong Jiang, Ying-Kai Xiao, Jun Wang, Hai Lu, Bin Wu, He-Pin Wu, Qing Li, and Chong-Guang Luo
Analytical Chemistry, 2012, Volume 84, Number 23, Page 10350
[55]
F. Farina Arboccò, P. Vermaercke, K. Smits, L. Sneyers, and K. Strijckmans
Journal of Radioanalytical and Nuclear Chemistry, 2013, Volume 295, Number 3, Page 2063
[56]
Luísa M.P.F. Amaral and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 57, Page 301
[57]
Ana Filipa L.O.M. Santos and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 58, Page 476
[58]
Viviana M. T. M. Silva, Carla S. M. Pereira, Alírio E. Rodrigues, Sergey P. Verevkin, Vladimir N. Emel’yanenko, Inna V. Garist, and Jürgen Gmehling
Industrial & Engineering Chemistry Research, 2012, Volume 51, Number 39, Page 12723
[59]
Ana L.R. Silva, Álvaro Cimas, and Maria D.M.C. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2013, Volume 57, Page 212
[60]
Manuel A.V. Ribeiro da Silva, Luísa M.P.F. Amaral, and Piotr Szterner
The Journal of Chemical Thermodynamics, 2013, Volume 57, Page 380
[61]
Sergey P. Verevkin, Vladimir N. Emel’yanenko, Andreas Heintz, Katharina Stark, and Wolfgang Arlt
Industrial & Engineering Chemistry Research, 2012, Volume 51, Number 37, Page 12150
[62]
F. Farina Arboccò, P. Vermaercke, K. Smits, L. Sneyers, and K. Strijckmans
Journal of Radioanalytical and Nuclear Chemistry, 2013, Volume 296, Number 2, Page 931
[63]
Manuel J. S. Monte, Rafael Notario, Maria M. G. Calvinho, Ana R. R. P. Almeida, Luísa M. P. F. Amaral, Ana I. M. C. Lobo Ferreira, and Maria D. M. C. Ribeiro da Silva
Journal of Chemical & Engineering Data, 2012, Volume 57, Number 9, Page 2486
[64]
Clara C.S. Sousa, Victor M.F. Morais, and M. Agostinha R. Matos
The Journal of Chemical Thermodynamics, 2013, Volume 56, Page 83
[65]
J.W. Arblaster
The Journal of Chemical Thermodynamics, 2013, Volume 56, Page 12
[66]
Hiroaki Nakao, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, and Takagimi Yanagitani
Optics Express, 2012, Volume 20, Number 14, Page 15385
[67]
N. E. Holden
Journal of ASTM International, 2012, Volume 9, Number 3, Page 103989
[68]
María Victoria Roux, Rafael Notario, Marta Segura, James S. Chickos, and Joel F. Liebman
Journal of Physical Organic Chemistry, 2012, Volume 25, Number 11, Page 916
[69]
Manuel A. V. Ribeiro da Silva, Manuel J. S. Monte, Inês M. Rocha, and Álvaro Cimas
The Journal of Organic Chemistry, 2012, Volume 77, Number 9, Page 4312
[70]
Ethan Rotenberg, Donald W. Davis, Yuri Amelin, Sanghamitra Ghosh, and Bridget A. Bergquist
Geochimica et Cosmochimica Acta, 2012, Volume 85, Page 41
[71]
M.D.M.C. Ribeiro da Silva, V.L.S. Freitas, M.A.A. Vieira, M.J. Sottomayor, and W.E. Acree
The Journal of Chemical Thermodynamics, 2012, Volume 49, Page 146
[72]
Manuel J.S. Monte, R. Notario, Sónia P. Pinto, Ana I.M.C. Lobo Ferreira, and Maria D.M.C. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2012, Volume 49, Page 159
[73]
Manuel A.V. Ribeiro da Silva and Joana I.T.A. Cabral
The Journal of Chemical Thermodynamics, 2012, Volume 47, Page 138
[74]
Ana R.R.P. Almeida, M. Agostinha R. Matos, Manuel J.S. Monte, and Victor M.F. Morais
The Journal of Chemical Thermodynamics, 2012, Volume 47, Page 81
[76]
Sergey P. Verevkin and Vladimir N. Emel’yanenko
The Journal of Chemical Thermodynamics, 2012, Volume 46, Page 94
[77]
Manuel A.V. Ribeiro da Silva, Luísa M.P.F. Amaral, and Piotr Szterner
The Journal of Chemical Thermodynamics, 2012, Volume 52, Page 30
[78]
Ana Filipa L.O.M. Santos and Manuel A.V. Ribeiro da Silva
The Journal of Chemical Thermodynamics, 2011, Volume 43, Number 10, Page 1480
[79]
Sergey P. Verevkin, Vladimir N. Emel’yanenko, Andrey A. Pimerzin, and Elena E. Vishnevskaya
The Journal of Physical Chemistry A, 2011, Volume 115, Number 44, Page 12271
[80]
Ana Filipa L. O. M. Santos and Manuel A. V. Ribeiro da Silva
The Journal of Physical Chemistry B, 2011, Volume 115, Number 43, Page 12549
[81]
Ana I. M. C. Lobo Ferreira and Manuel A. V. Ribeiro da Silva
Journal of Chemical & Engineering Data, 2011, Volume 56, Number 12, Page 4881
[82]
Herbert J. Tobias, Ying Zhang, Richard J. Auchus, and J. Thomas Brenna
Analytical Chemistry, 2011, Volume 83, Number 18, Page 7158
[83]
Manuel A.V. Ribeiro da Silva, Luísa M.P.F. Amaral, and Piotr Szterner
The Journal of Chemical Thermodynamics, 2011, Volume 43, Number 12, Page 1924
[84]
Manuel A.V. Ribeiro da Silva, Ana I.M.C. Lobo Ferreira, and Álvaro Cimas
The Journal of Chemical Thermodynamics, 2011, Volume 43, Number 12, Page 1857
[85]
A S Barabash, P Belli, R Bernabei, R S Boiko, F Cappella, V Caracciolo, D M Chernyak, R Cerulli, F A Danevich, M L Di Vacri, A E Dossovitskiy, E N Galashov, A Incicchitti, V V Kobychev, S I Konovalov, G P Kovtun, V M Kudovbenko, M Laubenstein, A L Mikhlin, S Nisi, D V Poda, R B Podviyanuk, O G Polischuk, A P Shcherban, V N Shlegel, D A Solopikhin, Yu G Stenin, V I Tretyak, V I Umatov, Ya V Vasiliev, and V D Virich
Journal of Instrumentation, 2011, Volume 6, Number 08, Page P08011
[86]
Ala B. Bazyleva, Andrey V. Blokhin, Gennady J. Kabo, Mikhail B. Charapennikau, Vladimir N. Emel’yanenko, Sergey P. Verevkin, and Vladimir Diky
The Journal of Physical Chemistry B, 2011, Volume 115, Number 33, Page 10064
[87]
Rafael Notario, Maria Victoria Roux, Concepción Foces-Foces, Manuel A. V. Ribeiro da Silva, Maria das Dores M. C. Ribeiro da Silva, Ana Filipa L. O. M. Santos, Ramón Guzmán-Mejía, and Eusebio Juaristi
The Journal of Physical Chemistry B, 2011, Volume 115, Number 30, Page 9401
[88]
U Pogliano, F Durbiano, and D Serazio
Measurement Science and Technology, 2011, Volume 22, Number 5, Page 055102

Comments (0)

Please log in or register to comment.
Log in