Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2015: 0.912
Source Normalized Impact per Paper (SNIP) 2015: 0.764

Online
ISSN
1365-3075
See all formats and pricing
In This Section
Volume 83, Issue 4 (Mar 2011)

Issues

Making solar fuels by artificial photosynthesis

Wenjing Song
  • Corresponding author
  • Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
/ Zuofeng Chen
  • Corresponding author
  • Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
/ M. Kyle Brennaman
  • Corresponding author
  • Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
/ Javier J. Concepcion
  • Corresponding author
  • Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
/ Antonio Otávio T. Patrocinio
  • Corresponding author
  • Laboratory of Photochemistry and Energy Conversion, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, Brazil
/ Neyde Y. Murakami Iha
  • Corresponding author
  • Laboratory of Photochemistry and Energy Conversion, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, Brazil
/ Thomas J. Meyer
  • Corresponding author
  • Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
Published Online: 2011-03-14 | DOI: https://doi.org/10.1351/PAC-CON-10-11-09

In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO2 by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo-synthesis is available based on a “modular approach” in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a “dye-sensitized photoelectrosynthesis cell” (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.

Keywords: artificial synthesis; CO2 reduction; proton-coupled electron transfer; solar fuel; water oxidation

Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIIIrd, Ferrara, Italy, 2010-07-11–2010-07-16

References

  • 1

    R. L. Hirsch, R. Bezdek, R. Wendling. A report sponsored by the National Energy Technology Laboratory of the U.S. Department of Energy (2005).

  • 2

    National Research Council of the National Academies. America’s Climate Choices: Informing an Effective Response to Climate Change (2010).

  • 3

    National Research Council of the National Academies. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use (2010).

  • 4

    United Nations Intergovernmental Panel on Climate Change. Fourth Assessment Report: Climate Change (2007).

  • 5

    [Crossref], V. K. Yachandra, K. Sauer, M. P. Klein. Chem. Rev. 96, 2927 (1996).

  • 6

    [Crossref], G. Renger, T. Renger. Photosynth. Res. 98, 53 (2008).

  • 7

    [Crossref], T. J. Meyer, M. H. V. Huynh, H. H. Thorp. Angew. Chem., Int. Ed. 46, 5284 (2007).

  • 8

    [Crossref], J. P. McEvoy, G. W. Brudvig. Chem. Rev. 106, 4455 (2006).

  • 9

    [Crossref], J. Kern, G. Renger. Photosynth. Res. 94, 183 (2007).

  • 10

    [Crossref], H. Dau, I. Zaharieva. Acc. Chem. Res. 42, 1861 (2009).

  • 11

    [Crossref], G. W. Brudvig. Philos. Trans. R. Soc. B: Bio. Sci. 363, 1211 (2008).

  • 12

    [Crossref], J. Barber, B. Andersson. Nature 370, 31 (1994).

  • 13

    J. Barber. Biochem. Soc. Trans. 34, 619 (2006).

  • 14

    [Crossref], J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yachandra. Science 314, 821 (2006).

  • 15

    [Crossref], B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka. Nature 438, 1040 (2005).

  • 16

    [Crossref], K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata. Science 303, 1831 (2004).

  • 17

    [Crossref], A. Fujishima, K. Honda. Nature 238, 37 (1972).

  • 18

    [Crossref], R. C. Young, T. J. Meyer, D. G. Whitten. J. Am. Chem. Soc. 98, 286 (1976).

  • 19

    [Crossref], T. J. Meyer. Pure Appl. Chem. 62, 1003 (1990).

  • 20

    [Crossref], C. R. Bock, T. J. Meyer, D. G. Whitten. J. Am. Chem. Soc. 96, 4710 (1974).

  • 21

    [Crossref], T. J. Meyer. Pure Appl. Chem. 62, 1003 (1990).

  • 22

    [Crossref], T. J. Meyer. Acc. Chem. Res. 22, 163 (1989).

  • 23

    [Crossref], D. Gust, T. A. Moore, A. L. Moore. Acc. Chem. Res. 34, 40 (2000).

  • 24

    D. Gust, T. A. Moore. The Porphyrin Handbook 8, 153 (1999).

  • 25

    [Crossref], M. R. Wasielewski. Chem. Rev. 92, 435 (1992).

  • 26

    [Crossref], V. Balzani. Pure Appl. Chem. 62, 1099 (1990).

  • 27

    [Crossref], J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer. Inorg. Chem. 44, 6802 (2005).

  • 28

    [Crossref], V. Balzani, A. Credi, M. Venturi. ChemSusChem 1, 26 (2008).

  • 29

    [Crossref], M. R. Wasielewski. J. Org. Chem. 71, 5051 (2006).

  • 30

    [Crossref], R. Lomoth, A. Magnuson, M. Sjödin, P. Huang, S. Styring, L. Hammarström. Photosynth. Res. 87, 25 (2006).

  • 31

    [Crossref], S. Fukuzumi. Eur. J. Inorg. Chem. 1351 (2008).

  • 32

    [Crossref], H. G. Park, J. K. Holt. Energy Environ. Sci. 3, 1028 (2010).

  • 33

    [Crossref], A. J. Bard, M. A. Fox. Acc. Chem. Res. 28, 141 (1995).

  • 34

    [Crossref], V. Balzani. Photochem. Photobiol. Sci. 2, 459 (2003).

  • 35

    [Crossref], B. C. O’Regan, M. Gratzel. Nature 353, 737 (1991).

  • 36

    [Crossref], B. C. O’Regan, J. R. Durrant. Acc. Chem. Res. 42, 1799 (2009).

  • 37

    [Crossref], M. Grätzel. Acc. Chem. Res. 42, 1788 (2009).

  • 38

    [Crossref], S. Ardo, G. J. Meyer. Chem. Soc. Rev. 38, 115 (2009).

  • 39

    [Crossref], J. A. Treadway, J. A. Moss, T. J. Meyer. Inorg. Chem. 38, 4386 (1999).

  • 40

    [Crossref], T. J. Meyer, M. H. V. Huynh. Inorg. Chem. 42, 8140 (2003).

  • 41

    [Crossref], W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk. J. Am. Chem. Soc. 131, 926 (2009).

  • 42

    [Crossref], D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes. J. Am. Chem. Soc. 132, 11467 (2010).

  • 43

    [Crossref], L. Li, L. Duan, Y. Xu, M. Gorlov, A. Hagfeldt, L. Sun. Chem. Commun. 46, 7307 (2010).

  • 44

    [Crossref], R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers, L. Spiccia. J. Am. Chem. Soc. 132, 2892 (2010).

  • 45

    [Crossref], W. Ruttinger, G. C. Dismukes. Chem. Rev. 97, 1 (1997).

  • 46

    [Crossref], B. A. Moyer, T. J. Meyer. J. Am. Chem. Soc. 100, 3601 (1978).

  • 47

    [Crossref], R. A. Binstead, M. E. McGuire, A. Dovletoglou, W. K. Seok, L. E. Roecker, T. J. Meyer. J. Am. Chem. Soc. 114, 173 (1992).

  • 48

    [Crossref], B. A. Moyer, T. J. Meyer. Inorg. Chem. 20, 436 (1981).

  • 49

    [Crossref], M. H. V. Huynh, T. J. Meyer. Chem. Rev. 107, 5004 (2007).

  • 50

    [Crossref], F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton, T. J. Meyer. Inorg. Chem. 47, 1727 (2008).

  • 51

    [Crossref], J. K. Hurst, J. Zhou, Y. Lei. Inorg. Chem. 31, 1010 (1992).

  • 52

    [Crossref], J. K. Hurst. Coord. Chem. Rev. 249, 313 (2005).

  • 53

    [Crossref], J. A. Gilbert, D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten, D. J. Hodgson, T. J. Meyer. J. Am. Chem. Soc. 107, 3855 (1985).

  • 54

    [Crossref], S. W. Gersten, G. J. Samuels, T. J. Meyer. J. Am. Chem. Soc. 104, 4029 (1982).

  • 55

    [Crossref], J. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer. J. Am. Chem. Soc. 130, 16462 (2008).

  • 56

    [Crossref], Z. Chen, J. J. Concepcion, J. W. Jurss, T. J. Meyer. J. Am. Chem. Soc. 131, 15580 (2009).

  • 57

    [Crossref], Z. Chen, J. J. Concepcion, X. Hu, W. Yang, P. G. Hoertz, T. J. Meyer. Proc. Natl. Acad. Sci. USA 107, 7225 (2010).

  • 58

    [Crossref], J. J. Concepcion, M.-K. Tsai, J. T. Muckerman, T. J. Meyer. J. Am. Chem. Soc. 132, 1545 (2010).

  • 59

    [Crossref], J. J. Concepcion, J. W. Jurss, M. R. Norris, Z. Chen, J. L. Templeton, T. J. Meyer. Inorg. Chem. 49, 1277 (2010).

  • 60

    [Crossref], J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer. Acc. Chem. Res. 42, 1954 (2009).

  • 61

    [Crossref], Z. Chen, J. J. Concepcion, J. F. Hull, P. G. Hoertz, T. J. Meyer. Dalton Trans. 39, 6950 (2010).

  • 62

    [Crossref], P. G. Hoertz, Z. Chen, C. A. Kent, T. J. Meyer. Inorg. Chem. 49, 8179 (2010).

  • 63

    [Crossref], J. J. Concepcion, J. W. Jurss, P. G. Hoertz, T. J. Meyer. Angew. Chem., Int. Ed. 48, 9473 (2009).

  • 64

    [Crossref], B. P. Sullivan, H. Abruna, H. O. Finklea, D. J. Salmon, J. K. Nagle, T. J. Meyer, H. Sprintschnik. Chem. Phys. Lett. 58, 389 (1978).

  • 65

    [Crossref], R. A. Binstead, B. A. Moyer, G. J. Samuels, T. J. Meyer. J. Am. Chem. Soc. 103, 2897 (1981).

  • 66

    [Crossref], E. M. Kober, J. V. Caspar, R. S. Lumpkin, T. J. Meyer. J. Phys. Chem. 90, 3722 (1986).

  • 67

    [Crossref], T. R. O’Toole, B. P. Sullivan, M. R. M. Bruce, L. D. Margerum, R. W. Murray, T. J. Meyer. J. Electroanal. Chem. 259, 217 (1989).

About the article

Published Online: 2011-03-14

Published in Print: 2011-03-14



Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-10-11-09. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wilaiwan Chanmanee, Mohammad Fakrul Islam, Brian H. Dennis, and Frederick M. MacDonnell
Proceedings of the National Academy of Sciences, 2016, Page 201516945
[2]
Kyung-Ryang Wee, Benjamin D. Sherman, M. Kyle Brennaman, Matthew V. Sheridan, Animesh Nayak, Leila Alibabaei, and Thomas J. Meyer
J. Mater. Chem. A, 2016, Volume 4, Number 8, Page 2969
[3]
R. Passalacqua, G. Centi, and S. Perathoner
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 2015, Volume 70, Number 5, Page 799
[4]
Yu Zhao, Yu Ding, Yutao Li, Lele Peng, Hye Ryung Byon, John B. Goodenough, and Guihua Yu
Chem. Soc. Rev., 2015, Volume 44, Number 22, Page 7968
[5]
Ralph L. House, Neyde Yukie Murakami Iha, Rodolfo L. Coppo, Leila Alibabaei, Benjamin D. Sherman, Peng Kang, M. Kyle Brennaman, Paul G. Hoertz, and Thomas J. Meyer
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015
[6]
Die Liu, Qianqian Liu, Yiming Li, Meng Wang, Xiaoyu Yang, Tun Wu, Charles Moorefield, Pingshan Wang, and George R. Newkome
Dalton Trans., 2015, Volume 44, Number 25, Page 11269
[7]
Masood Ahmad Rizvi
Russian Journal of General Chemistry, 2015, Volume 85, Number 4, Page 959
[8]
Dinesh Maity, Sourav Mardanya, Srikanta Karmakar, and Sujoy Baitalik
Dalton Trans., 2015, Volume 44, Number 21, Page 10048
[9]
Leila Alibabaei, Benjamin D. Sherman, Michael R. Norris, M. Kyle Brennaman, and Thomas J. Meyer
Proceedings of the National Academy of Sciences, 2015, Volume 112, Number 19, Page 5899
[10]
[11]
Zhen Fang, Akitaka Ito, Hanlin Luo, Dennis L. Ashford, Javier J. Concepcion, Leila Alibabaei, and Thomas J. Meyer
Dalton Trans., 2015, Volume 44, Number 18, Page 8640
[12]
Nicolas Queyriaux, Reuben T. Jane, Julien Massin, Vincent Artero, and Murielle Chavarot-Kerlidou
Coordination Chemistry Reviews, 2015
[14]
Alexander Gaenko, Albert DeFusco, Sergey A. Varganov, Todd J. Martínez, and Mark S. Gordon
The Journal of Physical Chemistry A, 2014, Volume 118, Number 46, Page 10902
[15]
Judith R. C. Lattimer, James D. Blakemore, Wesley Sattler, Sheraz Gul, Ruchira Chatterjee, Vittal K. Yachandra, Junko Yano, Bruce S. Brunschwig, Nathan S. Lewis, and Harry B. Gray
Dalton Trans., 2014, Volume 43, Number 40, Page 15004
[16]
Dinesh Maity, Chanchal Bhaumik, Sourav Mardanya, Srikanta Karmakar, and Sujoy Baitalik
Chemistry - A European Journal, 2014, Volume 20, Number 41, Page 13242
[17]
Derek M. Ryan, Michael K. Coggins, Javier J. Concepcion, Dennis L. Ashford, Zhen Fang, Leila Alibabaei, Da Ma, Thomas J. Meyer, and Marcey L. Waters
Inorganic Chemistry, 2014, Volume 53, Number 15, Page 8120
[18]
David J. Boston, Yeimi M. Franco Pachón, Reynaldo O. Lezna, N. R. de Tacconi, and Frederick M. MacDonnell
Inorganic Chemistry, 2014, Volume 53, Number 13, Page 6544
[19]
Christian Herrero, Annamaria Quaranta, Sanae El Ghachtouli, Boris Vauzeilles, Winfried Leibl, and Ally Aukauloo
Physical Chemistry Chemical Physics, 2014, Volume 16, Number 24, Page 12067
[21]
Jordan M. Sumliner, Hongjin Lv, John Fielden, Yurii V. Geletii, and Craig L. Hill
European Journal of Inorganic Chemistry, 2014, Volume 2014, Number 4, Page 635
[22]
Robin R. Knauf, M. Kyle Brennaman, Leila Alibabaei, Michael R. Norris, and Jillian L. Dempsey
The Journal of Physical Chemistry C, 2013, Volume 117, Number 48, Page 25259
[23]
Jae Hong Kim, Dong Heon Nam, and Chan Beum Park
Current Opinion in Biotechnology, 2014, Volume 28, Page 1
[24]
Davis B. Moravec and Michael D. Hopkins
Chemistry - A European Journal, 2013, Volume 19, Number 50, Page 17082
[25]
David J. Boston, Chengdong Xu, Daniel W. Armstrong, and Frederick M. MacDonnell
Journal of the American Chemical Society, 2013, Volume 135, Number 44, Page 16252
[26]
Chiara Genovese, Claudio Ampelli, Siglinda Perathoner, and Gabriele Centi
Journal of Catalysis, 2013, Volume 308, Page 237
[27]
Jérôme Fortage, Grégory Dupeyre, Fabien Tuyèras, Valérie Marvaud, Philippe Ochsenbein, Ilaria Ciofini, Magdaléna Hromadová, Lubomír Pospísil, Antonino Arrigo, Emanuela Trovato, Fausto Puntoriero, Philippe P. Lainé, and Sebastiano Campagna
Inorganic Chemistry, 2013, Volume 52, Number 20, Page 11944
[28]
Sébastien Liatard, Jérôme Chauvin, Damien Jouvenot, Frédérique Loiseau, and Alain Deronzier
The Journal of Physical Chemistry C, 2013, Volume 117, Number 40, Page 20431
[29]
Patrick Voyame, Kathryn E. Toghill, Manuel A. Méndez, and Hubert H. Girault
Inorganic Chemistry, 2013, Volume 52, Number 19, Page 10949
[30]
Alexander M. Lapides, Dennis L. Ashford, Kenneth Hanson, Daniel A. Torelli, Joseph L. Templeton, and Thomas J. Meyer
Journal of the American Chemical Society, 2013, Volume 135, Number 41, Page 15450
[31]
Michael T. Vagnini, Michael W. Mara, Michael R. Harpham, Jier Huang, Megan L. Shelby, Lin X. Chen, and Michael R. Wasielewski
Chemical Science, 2013, Volume 4, Number 10, Page 3863
[32]
Diane K. Zhong, Shengliang Zhao, Dmitry E. Polyansky, and Etsuko Fujita
Journal of Catalysis, 2013, Volume 307, Page 140
[33]
Wenjing Song, Akitaka Ito, Robert A. Binstead, Kenneth Hanson, Hanlin Luo, M. Kyle Brennaman, Javier J. Concepcion, and Thomas J. Meyer
Journal of the American Chemical Society, 2013, Volume 135, Number 31, Page 11587
[34]
David W. Thompson, Akitaka Ito, and Thomas J. Meyer
Pure and Applied Chemistry, 2013, Volume 85, Number 7
[35]
Kelley M. H. Young, Benjamin M. Klahr, Omid Zandi, and Thomas W. Hamann
Catalysis Science & Technology, 2013, Volume 3, Number 7, Page 1660
[36]
Antonio Otavio T. Patrocinio, Karina P. M. Frin, and Neyde Y. Murakami Iha
Inorganic Chemistry, 2013, Volume 52, Number 10, Page 5889
[37]
Christian Herrero, Annamaria Quaranta, Reza-Ali Fallahpour, Winfried Leibl, and Ally Aukauloo
The Journal of Physical Chemistry C, 2013, Volume 117, Number 19, Page 9605
[38]
Da Ma, Stephanie E. Bettis, Kenneth Hanson, Maria Minakova, Leila Alibabaei, William Fondrie, Derek M. Ryan, Garegin A. Papoian, Thomas J. Meyer, Marcey L. Waters, and John M. Papanikolas
Journal of the American Chemical Society, 2013, Volume 135, Number 14, Page 5250
[39]
Leila Alibabaei, Hanlin Luo, Ralph L. House, Paul G. Hoertz, Rene Lopez, and Thomas J. Meyer
Journal of Materials Chemistry A, 2013, Volume 1, Number 13, Page 4133
[40]
Zuofeng Chen, Peng Kang, Ming-Tian Zhang, Brian R. Stoner, and Thomas J. Meyer
Energy & Environmental Science, 2013, Volume 6, Number 3, Page 813
[41]
Davis B. Moravec and Michael D. Hopkins
The Journal of Physical Chemistry A, 2013, Volume 117, Number 8, Page 1744
[42]
Maxwell N. Kushner-Lenhoff, James D. Blakemore, Nathan D. Schley, Robert H. Crabtree, and Gary W. Brudvig
Dalton Transactions, 2013, Volume 42, Number 10, Page 3617
[43]
Shannon C. Riha, Michael J. DeVries Vermeer, Michael J. Pellin, Joseph T. Hupp, and Alex B. F. Martinson
ACS Applied Materials & Interfaces, 2013, Volume 5, Number 2, Page 360
[44]
Dennis L. Ashford, Wenjing Song, Javier J. Concepcion, Christopher R. K. Glasson, M. Kyle Brennaman, Michael R. Norris, Zhen Fang, Joseph L. Templeton, and Thomas J. Meyer
Journal of the American Chemical Society, 2012, Volume 134, Number 46, Page 19189
[45]
Hongjin Lv, Yurii V. Geletii, Chongchao Zhao, James W. Vickers, Guibo Zhu, Zhen Luo, Jie Song, Tianquan Lian, Djamaladdin G. Musaev, and Craig L. Hill
Chemical Society Reviews, 2012, Volume 41, Number 22, Page 7572
[46]
Yi-Yeoun Kim, David Williams, Fiona C. Meldrum, and Dominic Walsh
Small, 2013, Volume 9, Number 1, Page 61
[47]
Kenneth Hanson, Dennis L. Ashford, Javier J. Concepcion, Robert A. Binstead, Sohrab Habibi, Hanlin Luo, Christopher R. K. Glasson, Joseph L. Templeton, and Thomas J. Meyer
Journal of the American Chemical Society, 2012, Volume 134, Number 41, Page 16975
[48]
M. T. Vagnini, A. L. Smeigh, J. D. Blakemore, S. W. Eaton, N. D. Schley, F. D'Souza, R. H. Crabtree, G. W. Brudvig, D. T. Co, and M. R. Wasielewski
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 39, Page 15651
[49]
J. J. Concepcion, R. L. House, J. M. Papanikolas, and T. J. Meyer
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 39, Page 15560
[50]
Christopher R. K. Glasson, Wenjing Song, Dennis L. Ashford, Aaron Vannucci, Zuofeng Chen, Javier J. Concepcion, Patrick L. Holland, and Thomas J. Meyer
Inorganic Chemistry, 2012, Volume 51, Number 16, Page 8637
[51]
Christopher J. Gagliardi, Aaron K. Vannucci, Javier J. Concepcion, Zuofeng Chen, and Thomas J. Meyer
Energy & Environmental Science, 2012, Volume 5, Number 7, Page 7704
[52]
Kenneth Hanson, M. Kyle Brennaman, Akitaka Ito, Hanlin Luo, Wenjing Song, Kelsey A. Parker, Rudresh Ghosh, Michael R. Norris, Christopher R. K. Glasson, Javier J. Concepcion, Rene Lopez, and Thomas J. Meyer
The Journal of Physical Chemistry C, 2012, Volume 116, Number 28, Page 14837
[53]
He He, Chao Liu, Kevin D. Dubois, Tong Jin, Michael E. Louis, and Gonghu Li
Industrial & Engineering Chemistry Research, 2012, Volume 51, Number 37, Page 11841
[54]
Jérôme Fortage, Fausto Puntoriero, Fabien Tuyèras, Grégory Dupeyre, Antonino Arrigo, Ilaria Ciofini, Philippe P. Lainé, and Sebastiano Campagna
Inorganic Chemistry, 2012, Volume 51, Number 9, Page 5342
[55]
Zhuangqun Huang, Yurii V. Geletii, Djamaladdin G. Musaev, Craig L. Hill, and Tianquan Lian
Industrial & Engineering Chemistry Research, 2012, Volume 51, Number 37, Page 11850
[56]
Samir Bensaid, Gabriele Centi, Edoardo Garrone, Siglinda Perathoner, and Guido Saracco
ChemSusChem, 2012, Volume 5, Number 3, Page 500
[57]
Thomas J. Meyer
Nature Chemistry, 2011, Volume 3, Number 10, Page 757
[58]
Sergio K. Mizoguchi, Gerson Santos, Adnei M. Andrade, Fernando J. Fonseca, Luiz Pereira, and Neyde Y. Murakami Iha
Synthetic Metals, 2011, Volume 161, Number 17-18, Page 1972

Comments (0)

Please log in or register to comment.
Log in