Skip to content
Publicly Available Published by De Gruyter March 29, 2011

Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)

  • Kipton J. Powell , Paul L. Brown , Robert H. Byrne , Tamás Gajda , Glenn Hefter , Ann-Kathrin Leuz , Staffan Sjöberg and Hans Wanner

The numerical modeling of CdII speciation amongst the environmental inorganic ligands Cl, OH, CO32–, SO42–, and PO43– requires reliable values for the relevant stability (formation) constants. This paper compiles and provides a critical review of these constants and related thermodynamic data. It recommends values of log10βp,q,r° valid at Im = 0 mol kg–1 and 25 °C (298.15 K), along with the equations and empirical reaction ion interaction coefficients, ∆ε , required to calculate log10βp,q,r values at higher ionic strengths using the Brønsted–Guggenheim–Scatchard specific ion interaction theory (SIT). Values for the corresponding reaction enthalpies, ∆rH, are reported where available. Unfortunately, with the exception of the CdII-chlorido system and (at low ionic strengths) the CdII-sulfato system, the equilibrium reactions for the title systems are relatively poorly characterized. In weakly acidic fresh water systems (–log10 {[H+]/c°} < 6), in the absence of organic ligands (e.g., humic substances), CdII speciation is dominated by Cd2+(aq), with CdSO4(aq) as a minor species. In this respect, CdII is similar to CuII [2007PBa] and PbII [2009PBa]. However, in weakly alkaline fresh water solutions, 7.5 < –log10 {[H+]/c°} < 8.6, the speciation of CdII is still dominated by Cd2+(aq), whereas for CuII [2007PBa] and PbII [2009PBa] the carbonato- species MCO3(aq) dominates. In weakly acidic saline systems (–log10 {[H+]/cϒ} < 6; –log10 {[Cl]/c°} < 2.0) the speciation is dominated by CdCln(2–n)+ complexes, (n = 1–3), with Cd2+(aq) as a minor species. This is qualitatively similar to the situation for CuII and PbII. However, in weakly alkaline saline solutions, including seawater, the chlorido- complexes still dominate the speciation of CdII because of the relatively low stability of CdCO3(aq). In contrast, the speciation of CuII [2007PBa] and PbII [2009PBa] in seawater is dominated by the respective species MCO3(aq). There is scope for additional high-quality measurements in the Cd2+ + H+ + CO32– system as the large uncertainties in the stability constants for the Cd2+-carbonato complexes significantly affect the speciation calculations.

References

25WIa 10.1002/recl.19250440804, H. J. de Wijs. Rec. Trav. Chim.44, 663 (1925).Search in Google Scholar

27DAb C. W. Davies. Trans. Faraday Soc.23, 351 (1927).Search in Google Scholar

28PIa J. Piater. Z. Anorg. Chem.174, 321 (1928).10.1002/zaac.19281740133Search in Google Scholar

30RDa 10.1039/tf9302600592, E. C. Righellato, C. W. Davies. Trans. Faraday Soc.26, 592 (1930).Search in Google Scholar

32ISa F. Ishikawa, E. Shibata. Sci. Rep. Tohoku Imp. Univ. Ser. 121, 499 (1932).Search in Google Scholar

33JEa K. Jellinek, F. Stuttgart. Lehrbuch Phys. Chemie, 2nd ed. (1933).Search in Google Scholar

36HFa 10.1021/ja01303a070, H. S. Harned, M. E. Fitzgerald. J. Am. Chem. Soc.58, 2624 (1936).Search in Google Scholar

31LAM 10.1021/ja01357a003, V. K. La Mer, W. G. Parks. J. Am. Chem. Soc.53, 2040 (1931).Search in Google Scholar

38DAa 10.1039/jr9380002093, C. W. Davies. J. Chem. Soc. 2093 (1938).Search in Google Scholar

38OKa Y. Oka. J. Chem. Soc. Jpn.59, 971 (1938).10.1246/nikkashi1921.59.971Search in Google Scholar

41LEa I. Leden. Z. Phys. Chem. A188, 160 (1941).10.1515/zpch-1941-18815Search in Google Scholar

42MRa 10.1021/j150418a006, T. Moeller, P. W. Rhymer. J. Phys. Chem.46, 477 (1942).Search in Google Scholar

43Lea I. Leden. Dissertation, Lund University (1943).Search in Google Scholar

45FEa 10.1002/hlca.6602801205, W. Feitknecht. Helv. Chim. Acta28, 1444 (1945).Search in Google Scholar

49KIa 10.1021/ja01169a089, E. L. King. J. Am. Chem. Soc.71, 319 (1949).Search in Google Scholar

50AFa N. V. Aksel’rud, Y. A. Fialkov. Ukr. Khim. Zh.16, 28 (1950).Search in Google Scholar

51FRb 10.1002/hlca.19510340722, W. Feitknecht, R. Reinmann. Helv. Chim. Acta34, 2255 (1951).Search in Google Scholar

51VIa E. N. Vinogradova. Trudy An. Khim. Akad. Nauk SSSR3, 127 (1951).Search in Google Scholar

52CCa 10.1021/ja01140a019, S. Chaberek, R. C. Courtney, A. E. Martell. J. Am. Chem. Soc.74, 5057 (1952).Search in Google Scholar

52LEa 10.3891/acta.chem.scand.06-0971, I. Leden. Acta Chem. Scand.6, 971 (1952).Search in Google Scholar

53VDa 10.1021/ja01118a056, C. E. Vanderzee, H. J. Dawson Jr. J. Am. Chem. Soc.75, 5659 (1953).Search in Google Scholar

53ERa 10.3891/acta.chem.scand.07-1146, L. Eriksson. Acta Chem. Scand.7, 1146 (1953).Search in Google Scholar

54FRO 10.3891/acta.chem.scand.08-1174, S. Fronæus. Acta Chem. Scand.8, 1174 (1954).Search in Google Scholar

54GOa G. Goward. Ph.D. dissertation, Princeton University (1954).Search in Google Scholar

54NRa M. S. Novakovskii, A. P. Ryazantseva. Uch. Zapiski Khar’kov Univ. 54 (1954).Search in Google Scholar

57GWa 10.1021/j150549a020, K. H. Gayer, L. Woontner. J. Phys. Chem.61, 364 (1957).Search in Google Scholar

57KLa P. Kivalo, R. Luoto. Suomen Kem. B30, 163 (1957).Search in Google Scholar

58FNa 10.3891/acta.chem.scand.12-0878, M. Frydman, G. Nilsson, T. Rengemo, L. G. Sillen. Acta Chem. Scand.12, 878 (1958).Search in Google Scholar

58LGa 10.1139/v58-156, P. E. Lake, J. M. Goodings. Can. J. Chem.36, 1089 (1958).Search in Google Scholar

58SIL 10.1016/0022-1902(58)80180-3, L. G. Sillén. J. Inorg. Nucl. Chem.8, 176 (1958).Search in Google Scholar

58TFa 10.1021/ja01552a012, W. B. Treumann, L. M. Ferris. J. Am. Chem. Soc.80, 5048 (1958).Search in Google Scholar

59KBa I. M. Korenman, V. Burova. Trudy po Khim. Tekh. (Univ. Gor’kii)2, 366 (1959).Search in Google Scholar

59ROB R. A. Robinson, R. H. Stokes, Electrolyte Solutions, 2nd ed., p. 483, Butterworths, London (1959).Search in Google Scholar

59SCa 10.1002/hlca.19590420746, P. Schindler. Helv. Chim. Acta42, 2736 (1959).Search in Google Scholar

59SLc S. A. Shchularev, L. S. Lilich, V. A. Latysheva, I. I. Chuburkova. Vestnik Leningr. Univ.14, 66 (1959).Search in Google Scholar

61CAa V. G. Chukhlantsev, K. V. Alyamovskaya. Izv. Vuz. Khim.4, 706 (1961).Search in Google Scholar

62BCb 10.3891/acta.chem.scand.16-2221, G. Biedermann, L. Ciavatta. Acta Chem. Scand.16, 2221 (1962).Search in Google Scholar

62BDc 10.1016/0022-1902(62)80087-6, O. D. Bonner, H. Dolyniuk, C. F. Jordan, G. B. Hanson. J. Inorg. Nucl. Chem.24, 689 (1962).Search in Google Scholar

62BSc D. Banerjea, I. P. Singh. J. Indian Chem. Soc.39, 353 (1962).Search in Google Scholar

62DLa 10.3891/acta.chem.scand.16-1785, D. Dyrssen, P. Lumme. Acta Chem. Scand.16, 1785 (1962).Search in Google Scholar

62JPa P. K. Jena, B. Prasad. J. Indian Chem. Soc.39, 33 (1962).10.1088/0950-7671/39/9/436Search in Google Scholar

62LGa V. A. Latysheva, L. R. Goryanina. Zh. Neorg. Khim.7, 732 (1962).Search in Google Scholar

63MKg V. E. Mironov, F. Y. Kul’ba, V. A. Nazarov. Zh. Neorg. Khim.8, 916 (1963).Search in Google Scholar

64SMd V. B. Spivakovskii, L. P. Moisa. Zh. Neorg. Khim.9, 2287 (1964).Search in Google Scholar

64STb 10.1139/v64-097, J. Ste-Marie, A. E. Torma, A. O. Guebeli. Can. J. Chem.42, 662 (1964).Search in Google Scholar

65MAd 10.1016/0022-1902(65)80034-3, L. W. Marple. J. Inorg. Nucl. Chem.27, 1693 (1965).Search in Google Scholar

65GSa 10.1002/hlca.19650480408, H. Gamsjaeger, H. U. Stuber, P. Schindler. Helv. Chim. Acta48, 723 (1965).Search in Google Scholar

65HSc 10.1016/0022-1902(65)80197-X, H. E. Hellwege, G. K. Schweitzer. J. Inorg. Nucl. Chem.27, 99 (1965).Search in Google Scholar

65LIN W. F. Linke. Solubilities of Inorganic and Metal-Organic Compounds, 4th ed., American Chemical Society, Washington, DC (1965).Search in Google Scholar

65POa R. Pottel. Ber. Buns. Phys. Chem.69, 363 (1965).10.1002/bbpc.19650690502Search in Google Scholar

65RDa 10.1139/v65-135, D. E. Ryan, J. R. Dean, R. M. Cassidy. Can. J. Chem.43, 999 (1965).Search in Google Scholar

66GEb 10.3891/acta.chem.scand.20-0079, P. Gerding. Acta Chem. Scand.20, 79 (1966).Search in Google Scholar

66SGa A. Swinarski, A. Grodzicki. Roczniki Chem.40, 373 (1966).10.2307/40121027Search in Google Scholar

67AKc 10.3891/acta.chem.scand.21-2180, R. Arnek, W. Kakolowicz. Acta Chem. Scand.21, 2180 (1967).Search in Google Scholar

67MFa V. E. Mironov, A. V. Fokina. Zh. Neorg. Khim.12, 2571 (1967).Search in Google Scholar

68GJc 10.3891/acta.chem.scand.22-2247, P. Gerding, I. Jönsson. Acta Chem. Scand.22, 2247 (1968).Search in Google Scholar

68PRd B. Prasad. J. Indian Chem. Soc.45, 1037 (1968).Search in Google Scholar

69BGa F. Becker, R. Grundmann. Z. Phys. Chem. (Munich)66, 137 (1969).10.1524/zpch.1969.66.1_3.137Search in Google Scholar

69BSd W. G. Baldwin, L. G. Sillén. Ark. Kemi31, 391 (1970).Search in Google Scholar

69IEa 10.1039/j19690000047, R. M. Izatt, D. Eatough, J. J. Christensen, C. H. Bartholomew. J. Chem. Soc. A 47 (1969).Search in Google Scholar

69SPa G. Sahu, B. Prasad. J. Indian Chem. Soc.46, 233 (1969).10.1080/00325481.1969.11697225Search in Google Scholar

70ARb R. Arnek. Ark. Kemi32, 55 (1970).Search in Google Scholar

70LAe 10.1021/j100712a016, J. W. Larson. J. Phys. Chem.74, 3392 (1970).Search in Google Scholar

71FCb V. A. Fedorov, G. E. Chernikova, T. N. Kalosh, V. E. Mironov. Zh. Neorg. Khim.16, 325 (1971).Search in Google Scholar

71FCc V. A. Fedorov, G. E. Chernikova, V. E. Mironov. Zh. Neorg. Khim.16, 918 (1971).Search in Google Scholar

71GTa 10.1002/hlca.19710540820, A. O. Gübeli, R. Taillon. Helv. Chim. Acta54, 2559 (1971).Search in Google Scholar

72CAc 10.1021/je60052a039, S. Chakrabarti, S. Aditya. J. Chem. Eng. Data17, 46 (1972).Search in Google Scholar

72FKc V. A. Fedorov, L. I. Kiprin, V. E. Mironov. Zh. Neorg. Khim.17, 1233 (1972).Search in Google Scholar

72PIa 10.1039/f29726800101, K. S. Pitzer. J. Chem. Soc., Faraday Trans. 268, 101 (1972).Search in Google Scholar

73FCa V. A. Fedorov, G. E. Chernikova, M. A. Kuznechikhina, V. E. Mironov. Zh. Neorg. Khim.18, 645 (1973).Search in Google Scholar

73HHb 10.1039/dt9730001247, M. H. Hutchinson, W. C. E. Higginson. J. Chem. Soc., Dalton Trans. 1247 (1973).Search in Google Scholar

73HSa S. Hietanen, L. G. Sillén, E. Högfeldt. Chem. Scr.3, 65 (1973).Search in Google Scholar

73NMb T. Nozaki, T. Mise, K. Torii. Nippon Kagaku Kaishi 2030 (1973).10.1246/nikkashi.1973.2030Search in Google Scholar

73POa 10.1039/dt9730001947, H. K. J. Powell. J. Chem. Soc., Dalton Trans. 1947 (1973).Search in Google Scholar

74BIa G. Biedermann, J. Lagrange, P. Lagrange. Chem. Scr.5, 153 (1974).Search in Google Scholar

74BLb 10.1016/0022-1902(74)80694-9, J. W. Bixler, T. M. Larson. J. Inorg. Nucl. Chem.36, 224 (1974).Search in Google Scholar

74BLN A. A. Berdyev, N. B. Lezhnev, G. A. Nazarova, M. G. Shubina. Zh. Fiz. Khim.16, 2796 (1971).Search in Google Scholar

74EMa 10.1021/je60062a018, I. Eliezer, A. Moreno. J. Chem. Eng. Data19, 226 (1974).Search in Google Scholar

74FRc V. A. Fedorov, A. M. Robov, V. P. Plekhanov, V. V. Kudruk, M. A. Kuznechikhina, G. E. Chernikova. Zh. Neorg. Khim.19, 1255 (1974).Search in Google Scholar

74GAa 10.1016/0043-1354(74)90005-0, J. Gardiner. Water Res.8, 23 (1974).Search in Google Scholar

74RMb 10.1016/0022-1902(74)80136-3, S. Ramamoorthy, P. Manning. J. Inorg. Nucl. Chem.36, 695 (1974).Search in Google Scholar

75FCa V. A. Fedorov, G. E. Chernikova, M. A. Kuznechikhina, T. I. Kuznetsova. Zh. Neorg. Khim.20, 2912 (1975).Search in Google Scholar

75KLa M. Y. Kutuzova, L. E. Leshchishina, V. A. Federov. Zh. Neorg. Khim.20, 817 (1975).Search in Google Scholar

76KAa 10.1007/BF00645461, S. Katayama. J. Solution Chem.5, 241 (1976).Search in Google Scholar

76BHa 10.1016/S0003-2670(01)82850-6, H. Bilinski, R. Huston, W. Stumm. Anal. Chim. Acta84, 157 (1976).Search in Google Scholar

76BMa C. F. Baes, R. E. Mesmer. The Hydrolysis of Cations, John Wiley, New York (1976).Search in Google Scholar

76SHA 10.1107/S0567739476001551, R. D. Shannon. Acta Crystallogr., A32, 751 (1976).Search in Google Scholar

77BGa K. A. Burkov, L. A. Garmash, L. S. Lilich. Vestnik Leningr. Univ. 83 (1977).Search in Google Scholar

77BGb K. A. Burkov, L. A. Garmash. Zh. Neorg. Khim.22, 536 (1977).Search in Google Scholar

77HHb 10.1016/S0022-0728(77)80379-3, G. A. Heath, G. Hefter. J. Electroanal. Chem.84, 295 (1977).Search in Google Scholar

77MOa 10.1246/bcsj.50.1472, H. Matsui, H. Ohtaki. Bull. Chem. Soc. Jpn.50, 1472 (1977).Search in Google Scholar

78ARa 10.1021/ic50187a033, R. Aruga. Inorg. Chem.17, 2503 (1978).Search in Google Scholar

80SRa 10.1016/0304-4203(80)90005-5, L. Sipos, B. Raspor, H. W. Nürnberg, R. M. Pytkowicz. Marine Chem.9, 37 (1980).Search in Google Scholar

81MBa 10.1016/0022-1902(81)80450-2, D. de Marco, A. Bellomo, A. de Robertis. J. Inorg. Nucl. Chem.43, 137 (1981).Search in Google Scholar

81YYa 10.1246/bcsj.54.2286, H. Yokoyama, H. Yamatera. Bull. Chem. Soc. Jpn.54, 2286 (1981).Search in Google Scholar

82MAR E. A. Martell, R. M. Smith. Critical Stability Constants, Vol. 5, First Supplement, Plenum Press, New York (1982).10.1007/978-1-4615-6761-5Search in Google Scholar

82WAG D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data11, (Suppl. 2) (1982).Search in Google Scholar

84BAR J. Barthel, R. Buchner, H.-J. Wittmann. Z. Phys. Chem. (Munich)139, 23 (1984).10.1524/zpch.1984.139.139.023Search in Google Scholar

84STE R. Stella, V. M. T. Ganzerli, P. A. Borroni. 4thSymposium on Ion-Selective Electrodes. Mátrafüred. 633 (1984).Search in Google Scholar

85MCa J. Masłowska, E. Chruścińska. Pol. J. Chem.59, 339 (1985).Search in Google Scholar

85SGd N. Schmelzer, M. Grigo, B. Zorn, J. Einfeldt. Naturwissenschaften34, 25 (1985).Search in Google Scholar

89AGa T. Aha, A. K. Ghosh, J. C. Ghosh. J. Indian Chem. Soc.66, 762 (1989).Search in Google Scholar

89BPb 10.1016/0304-4203(89)90197-7, M. Branica, I. Pižeta, G. Branica-Jurković, M. Zelić. Marine Chem.28, 227 (1989).Search in Google Scholar

89NWa 10.1016/S0003-2670(00)84108-2, L. Nyholm, G. Wikmark. Anal. Chim. Acta223, 429 (1989).Search in Google Scholar

89SAb 10.1080/09593338909384827, M. Sadiq. Environ. Technol. Lett.10, 1057 (1989).Search in Google Scholar

89TRb 10.1016/S0020-1693(00)80595-2, S. T. Trisak, B.M. Rode. Inorg. Chim. Acta160, 249 (1989).Search in Google Scholar

90CHA J. Chand, S. Mallick, S. Rath, B. Behera. J. Electrochem. Soc. India39, 221 (1990).Search in Google Scholar

90EBa A. Elyayaoui, S. Boulhassa, R. Guillaumont. J. Radioanal. Nucl. Chem.142, 403 (1990).10.1007/BF02040310Search in Google Scholar

90SPb J. Stas, D. Pareau, A. Chesne, G. Durand. Bull. Soc. Chim. Fr.127, 360 (1990).Search in Google Scholar

91KHa 10.1016/0016-7037(91)90051-6, E. Königsberger, R. Hausner, H. Gamsjaeger. Geochim. Cosmochim. Acta55, 3505 (1991).Search in Google Scholar

91RFa 10.1007/BF01075134, D. Rai, A. R. Felmy, D. A. Moore. J. Solution Chem.20, 1169 (1991).Search in Google Scholar

92NEa 10.3891/acta.chem.scand.46-0231, E. Neher-Neumann. Acta Chem. Scand.46, 231 (1992).Search in Google Scholar

93MOR F. M. M. Morel, J. G. Hering. Principles and Applications of Aquatic Chemistry, John Wiley, New York (1993).Search in Google Scholar

93SPa 10.1016/0016-7037(93)90384-9, S. L. S. Stipp, G. A. Park, D. K. Nordstom, J. O. Leckie. Geochim. Cosmochim. Acta57, 2699 (1993).Search in Google Scholar

93VJa M. Visic, A. Jadric, I. Mekjavic. Croatica Chem. Acta66, 489 (1993).Search in Google Scholar

94IPa M. Iuliano, R. Porta. Ann. Chim. (Rome)84, 211 (1994).10.1016/0269-7491(94)90131-7Search in Google Scholar

94RIa 10.1007/BF00972713, W. W. Rudolph, G. Irmer. J. Solution Chem.23, 663 (1994).Search in Google Scholar

95STa H. P. Srivastava, D. Tiwari. Indian J. Chem. A34, 550 (1995).Search in Google Scholar

96SSa A. Saha, N. Saha, L.-N. Ji, J. Zhao, F. Gregán, S. A. S. Sajadi, B. Song, H. Sigel. J. Biol. Inorg. Chem.1, 231 (1996).10.1007/s007750050048Search in Google Scholar

97GRE I. Grenthe, A. V. Plyasunov, K. Spahiu. In Modelling in Aquatic Chemistry, I. Grenthe, I. Puigdomenech (Eds.), pp. 325–426, Organisation for Economic Cooperation and Development, Paris (1997).Search in Google Scholar

98ALa 10.1023/A:1006932412218, P. Arranz-Mascarós, R. López-Garzón, L. Godino-Salido, D. Gutiérrez-Valero. Transition Met. Chem.23, 501 (1998).Search in Google Scholar

98RUD 10.1039/a705212j, W. W. Rudolph. J. Chem. Soc., Faraday Trans.94, 489 (1998).Search in Google Scholar

99GPa 10.1023/A:1021716027817, H. Gamsjäger, W. Preis, E. Königsberger, M. C. Magalhães, P. Brandão. J. Solution Chem.28, 711 (1999).Search in Google Scholar

2000KAa 10.1016/S0020-1693(99)00435-1, Y. Kanekiyo, S. Aizawa, N. Koshino, S. Funahashi. Inorg. Chim. Acta298, 154 (2000).Search in Google Scholar

2000TMa 10.1021/je990336s, N. G. Tsierkezos, I. E. Molinou. J. Chem. Eng. Data45, 819 (2000).Search in Google Scholar

2001AMa 10.1021/je000199v, M. Ayati, H. Madsen. J. Chem. Eng. Data46, 113 (2001).Search in Google Scholar

2001MTa 10.1021/je0101101, I. E. Molinou, N. G. Tsierkezos. J. Chem. Eng. Data46, 1399 (2001).Search in Google Scholar

2001TVa R. Tomas, M. Visic, I. Tominic, V. Sokol. Croatica Chem. Acta74, 91 (2001).Search in Google Scholar

2003RUD 10.1039/b308951g, W. W. Rudolph, G. Irmer, G. T. Hefter. Phys. Chem. Chem. Phys.5, 5253 (2003).Search in Google Scholar

2004BCa 10.1021/jp034870p, R. Buchner, T. Chen, G. T. Hefter. J. Phys. Chem. B108, 2365 (2004).Search in Google Scholar

2005BES 10.1016/j.molliq.2004.07.023, M. Bešter-Rogač, V. Babič, T. M. Perger, R. Neueder, J. Barthel. J. Mol. Liq.118, 111 (2005).Search in Google Scholar

2005CHE 10.1007/s10953-005-6993-5, T. Chen, G. T. Hefter, R. Buchner. J. Solution Chem.34, 1045 (2005).Search in Google Scholar

2005PBa 10.1351/pac200577040739, K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner. Pure Appl. Chem.77, 739 (2005).Search in Google Scholar

2006ARa C. Akilan, N. Rohman, G. T. Hefter, R. Buchner. Chem. Phys. Chem.7, 2319 (2006).10.1002/cphc.200600342Search in Google Scholar

2006HEF 10.1351/pac200678081571, G. T. Hefter. Pure Appl. Chem.78, 1571 (2006).Search in Google Scholar

2006MAR 10.1021/cr040087x, Y. Marcus, G. T. Hefter. Chem. Rev.106, 4585 (2006).Search in Google Scholar PubMed

2007PBa 10.1351/pac200779050895, K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner. Pure Appl. Chem.79, 895 (2007).Search in Google Scholar

2008MAT 10.1016/j.jhazmat.2007.08.010, J. Matusik, T. Bajda, M. Manecki. J. Hazard. Mater.152, 1332 (2008).Search in Google Scholar PubMed

2009PBa 10.1351/PAC-REP-09-03-05, K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A.-K. Leuz, S Sjöberg, H. Wanner. Pure Appl. Chem.81, 2425 (2009).Search in Google Scholar

2010PET L. D. Pettit, K. J. Powell. SC-Database, IUPAC Stability Constants Database, Release 5.8, IUPAC, Academic Software, Otley, UK (2010).Search in Google Scholar


Project Year: 1999, Project Code: 1999-050-1-500


Online erschienen: 2011-3-29
Erschienen im Druck: 2011-3-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-08-09/html
Scroll to top button