Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 84, Issue 1

Issues

Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report)

Jean Rouquerol / Gino Baron / Renaud Denoyel / Herbert Giesche / Johan Groen / Peter Klobes / Pierre Levitz / Alexander V. Neimark / Sean Rigby / Romas Skudas / Kenneth Sing
  • Corresponding author
  • LCP, CNRS-University Aix-Marseille, Marseille, France
  • Brunel University, Uxbridge, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Thommes
  • Corresponding author
  • LCP, CNRS-University Aix-Marseille, Marseille, France
  • Quantachrome Instruments, Boynton Beach, FL, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus Unger
Published Online: 2011-12-12 | DOI: https://doi.org/10.1351/PAC-REP-10-11-19

This document deals with the characterization of porous materials having pore widths in the macropore range of 50 nm to 500 μm. In recent years, the development of advanced adsorbents and catalysts (e.g., monoliths having hierarchical pore networks) has brought about a renewed interest in macropore structures. Mercury intrusion–extrusion porosimetry is a well-established method, which is at present the most widely used for determining the macropore size distribution. However, because of the reservations raised by the use of mercury, it is now evident that the principles involved in the application of mercury porosimetry require reappraisal and that alternative methods are worth being listed and evaluated. The reliability of mercury porosimetry is discussed in the first part of the report along with the conditions required for its safe use. Other procedures for macropore size analysis, which are critically examined, include the intrusion of other non-wetting liquids and certain wetting liquids, capillary condensation, liquid permeation, imaging, and image analysis. The statistical reconstruction of porous materials and the use of macroporous reference materials (RMs) are also examined. Finally, the future of macropore analysis is discussed.

Keywords: capillary condensation; image analysis; IUPAC Physical and Biophysical Chemistry Division; liquid intrusion; macroporous materials; mercury porosimetry; permeation; pore size characterization; reference porous materials; statistical reconstruction of porous solids

Project Year: 2006, Project Code: 2006-021-2-100

References

  • 1

    , K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Pure Appl. Chem.57, 603 (1985).CrossrefGoogle Scholar

  • 2

    , J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. R. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Pure Appl. Chem.66, 1739 (1994).CrossrefGoogle Scholar

  • 3

    H. Giesche. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), pp. 309–351, Wiley-VCH, Weinheim (2002).Google Scholar

  • 4

    , C. León y León. Adv. Colloid Interface Sci.76-77, 341 (1998).CrossrefGoogle Scholar

  • 5

    ISO 15901-1:2005, “Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 2: Analysis of macropores by mercury porosimetry”, International Organization for Standardization (ISO), Geneva (2005).Google Scholar

  • 6

    S. Lowell, J. Shields, M. A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Porosity and Density, Springer (2004).Google Scholar

  • 7

    , C. Felipe, S. Cordero, I. Kornhauser, G. Zgrablich, R. Lopez, F. Rojas. Part. Part. Syst. Charact.23, 48 (2006).CrossrefGoogle Scholar

  • 8

    , S. P. Rigby, I. O. Evbuoumwan, M. J. Watt-Smith, K. Edler, R. S. Fletcher. Part. Part. Syst. Charact.23, 82 (2006).CrossrefGoogle Scholar

  • 9a

    , F. Porcheron, P. A. Monson, M. Thommes. Langmuir20, 6482 (2004).CrossrefGoogle Scholar

  • 9b

    , F. Porcheron, M. Thommes, R. Ahmad, P. A. Monson. Langmuir23, 3372 (2007).CrossrefGoogle Scholar

  • 10

    U.S. Department of Labor Occupational Safety and Health Administration (OSHA), Safety and Health Topics: Health Guidelines (2010). <http://www.osha.gov/SLTC/mercury/exposure_limits.html>.Google Scholar

  • 11

    U.S. Department of Labor Occupational Safety and Health Administration (OSHA). Occupational Safety and Health Guideline for Mercury Vapor, September (1996). <http://www.osha.gov/SLTC/healthguidelines/mercuryvapour/recognition.html>.Google Scholar

  • 12

    National Institute for Occupational Safety and Health (NIOSH). Publication No. 92-100 (1992). <http://www.cdc.gov/niosh/pdfs/92-100.pdf>.Google Scholar

  • 13

    J. D. Blando, D. Singh. Controlling Metallic Mercury Exposure in the Workplace: A Guide for Employers, revised ed., New Jersey Department of Health and Senior Services, Trenton, NJ (2004). <http://www.state.nj.us/health/surv/documents/mercemp.pdf>.Google Scholar

  • 14

    , F. Gomez, R. Denoyel, J. Rouquerol. Langmuir16, 3474 (2000).CrossrefGoogle Scholar

  • 15

    , B. Lefevre, A. Saugey, J.-L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, G. Vigier. J. Chem. Phys.120, 4927 (2004).CrossrefGoogle Scholar

  • 16

    A. Jena, K. Gupta. Fluid Particle Separation J.4, 227 (2002).Google Scholar

  • 17

    , A. Y. Fadeev, V. Eroshenko. J. Colloid Interface Sci.187, 275 (1997).CrossrefGoogle Scholar

  • 18

    , V. Eroshenko, R.-C. Regis, M. Soulard, J. Patarin. J. Am. Chem. Soc.123, 8129 (2001).CrossrefGoogle Scholar

  • 19

    , B. Miller, I. Tyomkin. J. Colloid Interface Sci.162, 163 (1994).CrossrefGoogle Scholar

  • 20

    Yu. M. Volfkovotch, V. S. Bagotzky, V. E. Sosenkin, E. I. Shkolnikov. Sov. Electrochem.16, 1325 (1981).Google Scholar

  • 21

    , Y. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, I. A. Blinov. Colloids Surf., A187-188, 349 (2001).CrossrefGoogle Scholar

  • 22

    A. V. Neimark. Ads. Sci. Technol.7, 210 (1990).CrossrefGoogle Scholar

  • 23

    A. V. Neimark. JETP Lett.51, 535 (1990).Google Scholar

  • 24

    , A. V. Neimark, E. Robens, K. K. Unger, J. M. Volfkovich. Fractals2, 45 (1994).CrossrefGoogle Scholar

  • 25

    P. N. Aukett, C. A. Jessop. In Fundamentals of Adsorption, M. D. Le Van (Ed.), p. 59, Kluwer, Boston (1996).Google Scholar

  • 26

    , K. L. Muray, N. A. Seaton, M. A. Day. Langmuir15, 6728 (1999).CrossrefGoogle Scholar

  • 27

    R. Denoyel, M. Barrande, I. Beurroies. In Studies in Surface Science and Catalysis, P. Llewellyn et al. (Eds.), Elsevier, 160, 33 (2007).Google Scholar

  • 28

    , I. Gusev. J. Chromatogr., A855, 273 (1999).CrossrefGoogle Scholar

  • 29

    P. C. Carman. Trans. Inst. Chem. Eng.15, 150 (1937).Google Scholar

  • 30

    , S. Mauran. Transport Porous Media43, 355 (2001).CrossrefGoogle Scholar

  • 31

    , V. Kapur. Ind. Eng. Chem. Res.35, 3179 (1996).CrossrefGoogle Scholar

  • 32

    , F. C. Leinweber. Anal. Chem.74, 2470 (2002).CrossrefGoogle Scholar

  • 33

    , F. C. Leinweber. J. Chromatogr., A1006, 207 (2003).CrossrefGoogle Scholar

  • 34

    F. C. Leinweber. Chem. Eng. Technol.11, 1177 (2002).Google Scholar

  • 35

    , N. Vervoort. Anal. Chem.75, 843 (2003).CrossrefGoogle Scholar

  • 36

    , P. Gzil. Anal. Chem.76, 6707 (2004).CrossrefGoogle Scholar

  • 37

    , A. F. Miguel, A. Serrenho. J. Phys. D: Appl. Phys.40, 6824 (2007).CrossrefGoogle Scholar

  • 38

    , R. Skudas, B. A. Grimes, M. Thommes, K. K. Unger. J. Chromatogr., A1216, 2635 (2009).CrossrefGoogle Scholar

  • 39

    , M. Brun, J. F. Quinson, C. Eyraud. Thermochim. Acta21, 59 (1977).CrossrefGoogle Scholar

  • 40

    , M. Barrande, I. Beurroies, R. Denoyel, I. Tatarova, M. Gramblicka, M. Polakovic, M. Joehnck, M. Schulte. J. Chromatogr., A1216, 6906 (2009).CrossrefGoogle Scholar

  • 41

    , J. H. Strange, M. Rahman, E. G. Smith. Phys. Rev. Lett.71, 3589 (1993).CrossrefGoogle Scholar

  • 42

    , D. Vargas-Florencia, O. V. Petrov, I. Furo. J. Colloid Interface Sci.305, 280 (2007).CrossrefGoogle Scholar

  • 43

    , M. P. Hollewand, L. F. Gladden. J. Catal.144, 254 (1993).CrossrefGoogle Scholar

  • 44a

    , Y. Wang, F. De Carlo, D. C. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I. Foster, J. Insley, P. Lane, G. von Laszewski, C. Kesselman, M. H. Su, M. Thiebaux. Rev. Sci. Instrum.72, 2062 (2001).CrossrefGoogle Scholar

  • 44b

    J. H. Raistrick. Mater. World9, 11 (2001).Google Scholar

  • 45

    J. H. Raistrick. Mater. World9, 11 (2001).Google Scholar

  • 46

    , A. J. Koster, U. Ziese, A. J. Verklejj, A. H. Janssen, K. P. de Jong. J. Phys. Chem. B104, 9368 (2000).CrossrefGoogle Scholar

  • 47

    , L. Holzer, F. Indutnyi, P. H. Gasser, B. Munch, M. Wegmann. J. Microsc.216, 84 (2004).CrossrefGoogle Scholar

  • 48

    , J. T. Fredrich. Phys. Chem. Earth A24, 551 (1999).CrossrefGoogle Scholar

  • 49

    P. T. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, UK (1991).Google Scholar

  • 50

    , L. Ruffino, R. Mann, R. Oldman, E. H. Stitt, E. Boller, P. Cloetens, M. di Michiel, J. Merino. Can. J. Chem. Eng.83, 132 (2005).CrossrefGoogle Scholar

  • 51

    S. P. Rigby, M. J. Watt-Smith, P. Chigada, J. A. Chudek, R. S. Fletcher, J. Wood, S. Bakalis, T. Miri. Chem. Eng. Sci.61, 7579 (2006).CrossrefGoogle Scholar

  • 52

    , S. P. Rigby, R. S. Fletcher. Part. Part. Syst. Charact.21, 138 (2004).CrossrefGoogle Scholar

  • 53

    S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, New York (2005).Google Scholar

  • 54

    P. Levitz. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), Chap. 2, Wiley-VCH, Weinheim (2002).Google Scholar

  • 55

    F. A. Dullien. Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1976).Google Scholar

  • 56

    M. Sahimi. Flow and Transport in Porous Media and Fractured Rock, VCH (1995).Google Scholar

  • 57

    J. Serra. Image Analysis and Mathematical Morphology, Academic Press, London (1982).Google Scholar

  • 58

    S. Ryde, S. Anderson, K. Larson, Z. Blum, T. Landh, S. Lidin, B. W. Ninham. The Language of Shape: The Role of Curvature in Condensed Matter, Elsevier (1997).Google Scholar

  • 59

    , C. H. Arns, M. A. Knackstedt, K. R. Mecke. Colloids Surf., A241, 351 (2004).CrossrefGoogle Scholar

  • 60

    , B. Lu, S. Torquato. J. Chem. Phys.93, 3452 (1990).CrossrefGoogle Scholar

  • 61

    , R. Hilfer. Phys. Rev. B44, 60 (1991).CrossrefGoogle Scholar

  • 62

    , B. Biswal, C. Manwart, R. Hilfer. Physica A255, 221 (1998).CrossrefGoogle Scholar

  • 63

    , P. Levitz, D. Tchoubar. J. Phys. I2, 771 (1992).CrossrefGoogle Scholar

  • 64

    P. Levitz. In Characterisation of Porous Solid IV, B. McEnaney et al. (Eds.), p. 213, Royal Society of Chemistry (1997).Google Scholar

  • 65

    M. Coleman. J. Appl. Prob.2, 169 (1965).Google Scholar

  • 66

    , H. Reiss. J. Phys. Chem.96, 4736 (1992).CrossrefGoogle Scholar

  • 67

    , M. Doi. J. Phys. Soc. Jpn.40, 567 (1976).CrossrefGoogle Scholar

  • 68

    A. Guinier, G. Fournet. Small Angle Scattering of X-rays, Chap. 1, John Wiley (1955).Google Scholar

  • 69

    , L. K. Barrett, C. S. Yust. Metallography3, 1 (1970).CrossrefGoogle Scholar

  • 70

    C. Lin, M. H. Cohen. J. Appl. Phys.59, 328 (1994).Google Scholar

  • 71

    , L. Pothuaud, P. Porion, E. Lespessailles, C. L. Benhamou, P. Levitz. J. Microsc.199, 149 (2000).CrossrefGoogle Scholar

  • 72

    , M. Han, S. Youssef, E. Rosenberg, M. Fleury, P. Levitz. Phys. Rev. E79, 031127 (2009).CrossrefGoogle Scholar

  • 73

    , L. Pothuaud, B. Rietbergen, L. Mosekilde, O. Beuf, P. Levitz, C. Benhamou, S. Majumdar. J. Biomechan.35, 1091 (2002).CrossrefGoogle Scholar

  • 74

    D. Stoyan, W. Kendall, J. Mecke. Stochastic Geometry and its Applications, 2nd ed., John Wiley (1995).Google Scholar

  • 75

    M. Y. Joshi. Ph.D. thesis, University of Kansas, USA (1974).Google Scholar

  • 76

    , P. M. Adler, C. G. Jacquin, J. A. Quiblier. Int. J. Multiphase Flow16, 691 (1990).CrossrefGoogle Scholar

  • 77

    , P. Levitz. Adv. Colloid Interface Sci.76–77, 71 (1998).CrossrefGoogle Scholar

  • 78

    , R. D. Hazlett. Math. Geol.29, 801 (1997).CrossrefGoogle Scholar

  • 79

    , M. Rintoul, S. J. Torquato. Colloid Interface Sci.186, 467 (1997).CrossrefGoogle Scholar

  • 80

    , C. L. T. Yeong, S. Torquato. Phys. Rev. E57, 495 (1998).CrossrefGoogle Scholar

  • 81

    , C. L. T. Yeong, S. Torquato. Phys. Rev. E58, 224 (1998).CrossrefGoogle Scholar

  • 82

    B. B. Mandelbrot. The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).Google Scholar

  • 83

    J. F. Gouyet. Physics and Fractal Structures, Springer (1996).Google Scholar

  • 84

    ISO/IEC 17025:2005, General Requirements for the Competence of Testing and Calibration Laboratories, International Organization for Standardization (ISO), Geneva (2005).Google Scholar

  • 85

    , H. Emons, A. Fajgelj, A. M. H. van der Veen, R. Watters. Accred. Qual. Assur.10, 576 (2006).CrossrefGoogle Scholar

  • 86

    ISO/IEC Guide 99, International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd ed. (2007). JCGM 200:2008 at <http://www.bipm.org/en/publica-tions/guides/vim>.Google Scholar

  • 87

    ISO Guide 30:1992, Terms and Definitions Used in Connection with Reference Materials, International Organization for Standardization (ISO), Geneva (1992).Google Scholar

  • 88

    ISO Guide 31:2000, Contents of Certificates of Reference Materials, International Organization for Standardization (ISO), Geneva (2000).Google Scholar

  • 89

    ISO Guide 32:1997, Calibration of Chemical Analysis and Use of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (1997).Google Scholar

  • 90

    ISO Guide 33:2000, Uses of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (2000).Google Scholar

  • 91

    ISO Guide 34:2000, General Requirements for the Competence of Reference Material Producers as Amended by Technical Corrigendum 1 of 15/11/2003, International Organization for Standardization (ISO), Geneva (2003).Google Scholar

  • 92

    ISO Guide 35:2006, Certification of Reference Materials: General and Statistical Principles, International Organization for Standardization (ISO), Geneva (2006).Google Scholar

  • 93

    ISO/IEC Guide 98:1995, Guide to the Expression of Uncertainty in Measurement (GUM), International Organization for Standardization (ISO), Geneva (1995).Google Scholar

About the article

Published Online: 2011-12-12

Published in Print: 2011-12-12


Citation Information: Pure and Applied Chemistry, Volume 84, Issue 1, Pages 107–136, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-REP-10-11-19.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Y. M. Volfkovich, A. S. Lobach, N. G. Spitsyna, S. A. Baskakov, V. E. Sosenkin, A. Y. Rychagov, E. N. Kabachkov, A. Sakars, A. Michtchenko, and Y. M. Shulga
Journal of Porous Materials, 2018
[2]
Yu. S. Dzyazko, V. M. Ogenko, Yu. M. Volfkovich, V. E. Sosenkin, T. V. Maltseva, T. V. Yatsenko, and K. O. Kudelko
Himia, Fizika ta Tehnologia Poverhni, 2018, Volume 9, Number 4, Page 417
[3]
M.N. Efimov, V.E. Sosenkin, Yu.M. Volfkovich, A.A. Vasilev, D.G. Muratov, S.A. Baskakov, O.N. Efimov, and G.P. Karpacheva
Electrochemistry Communications, 2018
[4]
Tereza Uhlířová and Willi Pabst
Ceramics International, 2018
[5]
Ling Xiang, Ahmat Ali, Ruxangul Jamal, Shuai Ding, Ziping Zhong, and Tursun Abdiryim
Polymer Composites, 2018
[6]
I. Michielsen, Y. Uytdenhouwen, J. Pype, B. Michielsen, J. Mertens, F. Reniers, V. Meynen, and A. Bogaerts
Chemical Engineering Journal, 2017, Volume 326, Page 477
[7]
Yu. M. Volfkovich, I. V. Goroncharovskaya, A. K. Evseev, V. E. Sosenkin, and M. M. Goldin
Russian Journal of Electrochemistry, 2017, Volume 53, Number 12, Page 1334
[8]
Marek Václavík, Marie Plachá, Petr Kočí, Miloš Svoboda, Thomas Hotchkiss, Vladimír Novák, and David Thompsett
Materials Characterization, 2017, Volume 134, Page 311
[9]
Yu.M. Volfkovich, А. Yu. Rychagov, А.А. Mikhalin, М.М. Kardash, N.А. Kononenko, D.V. Ainetdinov, S.A. Shkirskaya, and V.Е. Sosenkin
Desalination, 2018, Volume 426, Page 1
[10]
Guillaume Fraux, François-Xavier Coudert, Anne Boutin, and Alain H. Fuchs
Chem. Soc. Rev., 2017
[11]
Bin Du, Changqing Hong, Anzhe Wang, Shitong Zhou, Qiang Qu, Shanbao Zhou, and Xinghong Zhang
Ceramics International, 2017
[13]
A. A. Stepanov, M. I. Buzin, E. G. Kononova, V. E. Sosenkin, and Yu. M. Vol’fkovich
Russian Journal of Electrochemistry, 2017, Volume 53, Number 5, Page 555
[14]
N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Yu. Volfkovich
Advances in Colloid and Interface Science, 2017, Volume 246, Page 196
[15]
Fuquan Xiong, Yanming Han, Siqun Wang, Gaiyun Li, Tefu Qin, Yuan Chen, and Fuxiang Chu
ACS Sustainable Chemistry & Engineering, 2017, Volume 5, Number 3, Page 2273
[16]
Julien Dupas, Vincent Girard, and Laurent Forny
Langmuir, 2017, Volume 33, Number 4, Page 988
[17]
Victoria Flexer, Bogdan C. Donose, Camille Lefebvre, Guillermo Pozo, Matthieu N. Boone, Luc Van Hoorebeke, Mohamed Baccour, Laurent Bonnet, Sylvie Calas-Etienne, Anne Galarneau, Magdalena M. Titirici, and Nicolas Brun
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 5, Page 2508
[18]
H. Chemmi, D. Petit, V. Tariel, J-P. Korb, R. Denoyel, R. Bouchet, and P. Levitz
The European Physical Journal Special Topics, 2015, Volume 224, Number 9, Page 1749
[19]
Jeffrey Kenvin, Jacek Jagiello, Sharon Mitchell, and Javier Pérez-Ramírez
Langmuir, 2015, Volume 31, Number 4, Page 1242
[21]
Benoit Coasne, Anne Galarneau, Roland J. M. Pellenq, and Francesco Di Renzo
Chemical Society Reviews, 2013, Volume 42, Number 9, Page 4141
[22]
A. Dukhin, S. Swasey, and M. Thommes
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, Volume 437, Page 127
[23]
Alberto Cavazzini, Nicola Marchetti, Luisa Pasti, Roberto Greco, Francesco Dondi, Aldo Laganà, Alessia Ciogli, and Francesco Gasparrini
Analytical Chemistry, 2013, Volume 85, Number 1, Page 19
[24]
Gaurav Lalwani, Andrea Trinward Kwaczala, Shruti Kanakia, Sunny C. Patel, Stefan Judex, and Balaji Sitharaman
Carbon, 2013, Volume 53, Page 90

Comments (0)

Please log in or register to comment.
Log in