Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 84, Issue 11

Issues

Identification of heat shock protein 60 as the regulator of the hypoxia-inducible factor subunit HIF-1α

Hyun Seung Ban
  • Corresponding author
  • Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kazuki Shimizu
  • Corresponding author
  • Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidemitsu Minegishi
  • Corresponding author
  • Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiroyuki Nakamura
  • Corresponding author
  • Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-18 | DOI: https://doi.org/10.1351/PAC-CON-11-11-03

The hypoxia-inducible factor (HIF) takes part in transcriptional activation of hypoxia-responsive genes such as vascular endothelial growth factor (VEGF), insulin-like growth factor, and inducible nitric oxide synthase. Since VEGF plays an important role in pathological angiogenesis such as tumor growth and ischemic diseases, the inhibition of VEGF inducer HIF is an attractive approach for the inhibition of pathological angiogenesis. Recently, we have reported that the introduction of boronic acid and a carborane moiety into phenoxyacetanilide induced a potent inhibitory effect on HIF-1α activation under hypoxic conditions. In the present study, to clarify the mechanism of action of carboranylphenoxyacetanilide GN26361 against HIF inhibition, we designed and synthesized molecular probes of GN26361 substituted with benzophenone to induce covalent binding with the target protein by UV (photoaffinity labeling) and an acetylenic moiety to conjugate with the green-fluorescent Alexa Fluor 488-azide by click reaction. In-gel fluorescent imaging of target protein bound with the probe was identified as heat shock protein 60 (HSP60). Moreover, direct binding in gel fluorescent imaging was observed by photoaffinity labeling and click reaction of the probe with recombinant HSP60. These results indicate that HSP60 is the target protein of GN26361 and might be a new molecular target for HIF inhibition.

Keywords: anticancer activity; boron; carboranes; chemistry; drug discovery; heat shock protein 60; hypoxia-inducible factor; photoaffinity

Conference

International Meeting on Boron Chemistry (IMEBORON-XIV), International Symposium on Boron Chemistry, IMEB, Boron Chemistry, 14th, Niagara Falls, Canada, 2011-09-11–2011-09-15

References

  • 1

    , K. Iwai, K. Yamanaka, T. Kamura, N. Minato, R. C. Conaway, J. W. Conaway, R. D. Klausner, A. Pause. Proc. Natl. Acad. Sci. USA96, 12436 (1999).CrossrefGoogle Scholar

  • 2

    , A. L. Harris. Nat. Rev. Cancer2, 38 (2002).CrossrefGoogle Scholar

  • 3

    P. H. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, P. J. Ratcliffe. Nature399, 271 (1999).Google Scholar

  • 4

    , M. E. Cockman, N. Masson, D. R. Mole, P. Jaakkola, G. W. Chang, S. C. Clifford, E. R. Maher, C. W. Pugh, P. J. Ratcliffe, P. H. Maxwell. J. Biol. Chem.275, 25733 (2000).CrossrefGoogle Scholar

  • 5

    , E. Berra, D. E. Richard, E. Gothie, J. Pouyssegur. FEBS Lett.491, 85 (2001).CrossrefGoogle Scholar

  • 6

    , P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe. Science292, 468 (2001).CrossrefGoogle Scholar

  • 7

    , M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, W. G. Kaelin Jr. Science292, 464 (2001).CrossrefGoogle Scholar

  • 8

    , G. L. Semenza. Nat. Rev. Cancer3, 721 (2003).CrossrefGoogle Scholar

  • 9

    , B. Dawn, R. Bolli. Am. J. Physiol. Heart Circ. Physiol.289, H522 (2005).CrossrefGoogle Scholar

  • 10

    , Y. Cao, P. Linden, J. Farnebo, R. Cao, A. Eriksson, V. Kumar, J. H. Qi, L. Claesson-Welsh, K. Alitalo. Proc. Natl. Acad. Sci. USA95, 14389 (1998).CrossrefGoogle Scholar

  • 11

    , N. Ferrara, H. P. Gerber, J. LeCouter. Nat. Med.9, 669 (2003).CrossrefGoogle Scholar

  • 12

    , G. L. Semenza. Oncogene29, 625 (2010).CrossrefGoogle Scholar

  • 13

    A. Rapisarda, B. Uranchimeg, D. A. Scudiero, M. Selby, E. A. Sausville, R. H. Shoemaker, G. Melillo. Cancer Res.62, 4316 (2002).Google Scholar

  • 14

    , M. Y. Koh, T. Spivak-Kroizman, S. Venturini, S. Welsh, R. R. Williams, D. L. Kirkpatrick, G. Powis. Mol. Cancer Ther.7, 90 (2008).CrossrefGoogle Scholar

  • 15

    E.-J. Yeo, Y.-S. Chun, Y.-S. Cho, J. Kim, J.-C. Lee, M.-S. Kim, J.-W. Park. J. Natl. Cancer Inst.95, 516 (2003).Google Scholar

  • 16

    , M. Uno, H. S. Ban, H. Nakamura. Bioorg. Med. Chem. Lett.19, 3166 (2009).CrossrefGoogle Scholar

  • 17

    , M.-S. Won, N. Im, S. Park, S. K. Boovanahalli, Y. Jin, X. Jin, K.-S. Chung, M. Kang, K. Lee, S.-K. Park, H. M. Kim, B. M. Kwon, J. J. Lee, K. Lee. Biochem. Biophys. Res. Commun.385, 16 (2009).CrossrefGoogle Scholar

  • 18

    , K. Shimizu, M. Maruyama, Y. Yasui, H. Minegishi, H. S. Ban, H. Nakamura. Bioorg. Med. Chem. Lett.20, 1453 (2010).CrossrefGoogle Scholar

  • 19

    F. Kotzyba-Hibert, I. Kapfer, M. Goeldner. Angew. Chem., Int. Ed.34, 1296 (1995).Google Scholar

  • 20

    , H. C. Kolb, M. G. Finn, K. B. Sharpless. Angew. Chem., Int. Ed.40, 2004 (2001).CrossrefGoogle Scholar

  • 21

    , V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless. Angew. Chem., Int. Ed.41, 2596 (2002).CrossrefGoogle Scholar

  • 22

    Y. Nagumo, H. Kakeya, M. Shoji, Y. Hayashi, N. Dohmae, H. Osada. Biochem. J.387, 835 (2005).Google Scholar

  • 23

    K. Gradin, J. McGuire, R. Wenger, I. Kvietikova, M. fhitelaw, R. Toftgard, L. Tora, M. Gassmann, L. Poellinger. Mol. Cell. Biol.16, 5221 (1996).CrossrefGoogle Scholar

  • 24

    N. J. Mabjeesh, D. E. Post, M. T. Willard, B. Kaur, E. G. Van Meir, J. W. Simons, H. Zhong. Cancer Res.62, 2478 (2002).Google Scholar

  • 25

    , J. S. Isaacs, Y. J. Jung, E. G. Mimnaugh, A. Martinez, F. Cuttitta, L. M. Neckers. J. Biol. Chem.277, 29936 (2002).CrossrefGoogle Scholar

About the article

Published Online: 2012-05-18

Published in Print: 2012-05-18


Citation Information: Pure and Applied Chemistry, Volume 84, Issue 11, Pages 2325–2337, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-11-11-03.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Claudia Campanella, Andrea Pace, Celeste Caruso Bavisotto, Paola Marzullo, Antonella Marino Gammazza, Silvestre Buscemi, and Antonio Palumbo Piccionello
International Journal of Molecular Sciences, 2018, Volume 19, Number 9, Page 2603
[2]
Hiroyuki Nakamura, Lisa Tasaki, Daisuke Kanoh, Shinichi Sato, and Hyun Seung Ban
Dalton Trans., 2014, Volume 43, Number 13, Page 4941
[4]
Hidemitsu Minegishi, Takuya Matsukawa, and Hiroyuki Nakamura
ChemMedChem, 2013, Volume 8, Number 2, Page 265

Comments (0)

Please log in or register to comment.
Log in