Skip to content
Publicly Available Published by De Gruyter February 3, 2012

Accessing chemical diversity by stereoselective gold-catalyzed manipulation of allylic and propargylic alcohols

  • Gianpiero Cera , Michel Chiarucci and Marco Bandini

The combined use of asymmetric Au(I) catalysis with allylic as well as propargylic alcohols proved to be a competent synthetic tool, toward the realization of complex molecular organic architectures in a stereochemically defined manner. In particular, allylic alcohols have been utilized as alkylating agents in the synthesis of tetrahydrocarbazoles/carbolines and morpholines by means of new C–C and C–X bond-forming processes. Analogously, the direct activation of indole-propargylic alcohols with cationic Au complexes opened a direct access to tetracyclic fused indolines in a highly stereoselective manner.


Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-16), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 16th, Shanghai, China, 2011-07-24–2011-07-28


References

1 10.1002/adsc.201100488, C. A. Busacca, D. R. Fandrick, J. J. Song, C. H. Senanayake. Adv. Synth. Catal.353, 1825 (2011).Search in Google Scholar

2 For selected examples, see.Search in Google Scholar

2a 10.1002/anie.200502735, A. S. K. Hashmi. Angew. Chem., Int. Ed.44, 6990 (2005).Search in Google Scholar PubMed

2b 10.1021/cr000436x, A. S. K. Hashmi. Chem. Rev.107, 3180 (2007).Search in Google Scholar PubMed

2c 10.1016/j.cattod.2006.10.006, A. S. K. Hashmi. Catal. Today122, 211 (2007).Search in Google Scholar

2d A. Fürstner, O. D. Davies. Angew. Chem., Int. Ed.46, 4310 (2007).Search in Google Scholar

2e 10.1039/b615629k, A. S. K. Hashmi, M. Rudolph. Chem. Soc. Rev.37, 1766 (2008).Search in Google Scholar PubMed

2f 10.1016/j.tet.2008.01.081, H. C. Shen. Tetrahedron64, 3885 (2008).Search in Google Scholar

2g 10.1016/j.tet.2008.03.083, R. Skouta, C.-J. Li. Tetrahedron64, 4917 (2008).Search in Google Scholar

2h 10.1021/cr068435d, A. Arcadi. Chem. Rev.108, 3266 (2008).Search in Google Scholar PubMed

2i 10.1021/cr068430g, D. J. Gorin, B. D. Sherry, F. D. Toste. Chem. Rev.108, 3351 (2008).Search in Google Scholar PubMed PubMed Central

2j 10.1002/anie.200704729, N. Bongers, N. Krause. Angew. Chem., Int. Ed.47, 2178 (2008).Search in Google Scholar PubMed

2k 10.1002/ejoc.200900790, P. Belmont, E. Parker. Eur. J. Org. Chem. 6075 (2009).Search in Google Scholar

2l N. D. Shapiro, F. D. Toste. Synlett 675 (2010).10.1055/s-0029-1219369Search in Google Scholar PubMed PubMed Central

2m S. Wang, G. Zhang, L. Zhang. Synlett 692 (2010).10.1055/s-0029-1219527Search in Google Scholar

3a 10.1039/b823217b, M. Bandini, M. Tragni. Org. Biomol. Chem.7, 1501 (2009).Search in Google Scholar PubMed

3b 10.1002/anie.200804114, N. Ljungdahl, N. Kann. Angew. Chem., Int. Ed.48, 642 (2009).Search in Google Scholar PubMed

3c 10.1002/ejoc.201001474, E. Emer, R. Sinisi, M. Guiteras Capdevila, D. Petruzziello, F. De Vincentiis, P. G. Cozzi. Eur. J. Org. Chem. 647 (2011).Search in Google Scholar

4a 10.1002/chem.200800219, R. A. Widenhoefer. Chem.—Eur. J.14, 5382 (2008).Search in Google Scholar PubMed

4b 10.1021/cr068430g, D. J. Gorin, B. D. Sherry, F. D. Toste. Chem. Rev.108, 3351 (2008).Search in Google Scholar PubMed PubMed Central

4c S. Sengupta, X. Shi. Chem. Cat. Chem.2, 609 (2010).Search in Google Scholar

4d 10.1002/anie.200906609, A. S. K. Hashmi, C. Hubbert. Angew. Chem., Int. Ed.49, 1010 (2010).Search in Google Scholar PubMed

4e A. Pradal, P. Y. Toullec, V. Michelet. Synthesis 1501 (2011).10.1055/s-0030-1258465Search in Google Scholar

5 10.1002/ejoc.201100858, B. Biannic, A. Aponick. Eur. J. Org. Chem. 6605 (2011).Search in Google Scholar

6a R. J. Sundberg. In The Chemistry of Indoles, Academic Press, New York (1970).Search in Google Scholar

6b R. K. Brown. In Indoles, W. J. Houlihan (Ed.), Wiley-Interscience, New York (1972).Search in Google Scholar

6c R. J. Sundberg. “Pyrroles and their benzoderivatives: Synthesis and applications”, in Comprehensive Heterocyclic Chemistry, Vol. 4, A. R. Katritzky, C. W. Rees (Eds.), p. 313, Pergamon, Oxford (1984).Search in Google Scholar

6d J. A. Joule. “Indole and its derivatives” in Science of Synthesis (Houben-Weyl Methods of Molecular Transformations), Vol. 10, E. J. Thomas (Ed.), Chap. 10.13, Thieme, Stuttgart (2000).Search in Google Scholar

7a 10.1002/anie.200904388, M. Bandini, A. Eichholzer. Angew. Chem., Int. Ed.48, 9608 (2009).Search in Google Scholar PubMed

7b 10.1039/b923063g, G. Bartoli, G. Bencivenni, R. Dalpozzo. Chem. Soc. Rev.39, 4449 (2010).Search in Google Scholar PubMed

8a 10.1002/anie.200301679, M. Bandini, A. Melloni, A. Umani-Ronchi. Angew. Chem., Int. Ed.43, 550 (2004).Search in Google Scholar PubMed

8b 10.1055/s-2005-865210, M. Bandini, A. Melloni, S. Tommasi, A. Umani-Ronchi. Synlett 1199 (2005).Search in Google Scholar

9 10.1021/ja054109o, M. Bandini, A. Melloni, F. Piccinelli, R. Sinisi, S. Tommasi, A. Umani-Ronchi. J. Am. Chem. Soc.128, 1424 (2006).Search in Google Scholar PubMed

10 10.1002/anie.200904388, M. Bandini, A. Eichholzer. Angew. Chem., Int. Ed.48, 9533 (2009).Search in Google Scholar

11 10.1016/j.jorganchem.2010.09.065, M. Bandini, A. Gualandi, M. Monari, A. Romaniello, D. Savoia, M. Tragni. J. Organomet. Chem.696, 338 (2011).Search in Google Scholar

12 R. Wijtmans, M. K. S. Vink, H. E. Schoemaker, F. L. van Delft, R. H. Blaauw, F. P. J. T. Rutjes. Synthesis 641 (2004).10.1055/s-2004-816003Search in Google Scholar

13a 10.1021/jo9007223, M. L. Leathen, B. R. Rosen, J. P. Wolfe. J. Org. Chem.74, 5107 (2009) and refs. therein; see also.Search in Google Scholar PubMed PubMed Central

13b 10.1021/ja00091a061, H. Ito, Y. Ikeuchi, T. Taguchi, Y. Hanzawa, M. Shiro. J. Am. Chem. Soc.116, 5469 (1994).Search in Google Scholar

13c 10.1021/jo901297d, M. K. Ghorai, D. Shukla, K. Das. J. Org. Chem.74, 7013 (2009).Search in Google Scholar PubMed

14 M. Bandini, A. Eichholzer, A. Gualandi, T. Quinto, D. Savoia. Chem. Cat. Chem.2, 661 (2010).Search in Google Scholar

15 10.1002/chem.201002606, M. Bandini, M. Monari, A. Romaniello, M. Tragni. Chem.—Eur. J.12, 14272 (2010).Search in Google Scholar PubMed

16a 10.1021/ja0534147, M. Georgy, V. Boucard, J.-M. Champagne. J. Am. Chem. Soc.127, 14180 (2005).Search in Google Scholar PubMed

16b 10.1002/adsc.200900068, Y. Lu, X. Du, X. Jia, Y. Liu. Adv. Synth. Catal.351, 1517 (2009).Search in Google Scholar

17 Special issue on “Coinage Metals in Organic Synthesis”: Chem. Rev.8, 2793–3442 (2008).10.1021/cr800415xSearch in Google Scholar PubMed

18 I. Ojima (Ed.). Catalytic Asymmetric Synthesis, 3rd ed., Wiley-VCH, Hoboken (2010).10.1002/9780470584248Search in Google Scholar

19a 10.1021/ol703002p, A. Aponick, C.-Y. Li, B. Biannic. Org. Lett.10, 669 (2008).Search in Google Scholar PubMed

19b 10.1039/c0cc01961e, A. Aponick, B. Biannic, M. R. Jong. Chem. Commun.46, 6849 (2010).Search in Google Scholar PubMed

19c 10.1021/ol902923e, P. Mukherjee, R. A. Widenhoefer. Org. Lett.12, 1184 (2010).Search in Google Scholar PubMed PubMed Central

19d 10.1039/c1cc11805f, A. Aponick, B. Biannic. Org. Lett.13, 1330 (2011).Search in Google Scholar PubMed

19d W. P. Unsworth, K. Stevens, S. G. Lamontb, J. Robertson. Chem. Commun.47, 7659 (2011).Search in Google Scholar

20 10.3762/bjoc.7.91, B. Biannic, T. Ghebreghiorgis, A. Aponick. Beilstein J. Org. Chem.7, 802 (2011).Search in Google Scholar PubMed PubMed Central

21 10.1002/chem.201103023, M. Kojima, K. Mikami. Chem.—Eur. J.17, 13950 (2011).Search in Google Scholar PubMed

22a 10.1002/anie.200907078, A. S. K. Hashmi. Angew. Chem., Int. Ed.49, 5232 (2010).Search in Google Scholar PubMed

22b 10.1039/c1cs15182g, H. Schmidbaur, A. Schier. Chem. Soc. Rev.41, 370 (2012).Search in Google Scholar PubMed

23a 10.1002/anie.200503484, C. Ferrer, A. M. Echavarren. Angew. Chem., Int. Ed.45, 1105 (2006).Search in Google Scholar PubMed

23b 10.1039/b612008c, E. Jiménez-Núñez, A. M. Echavarren. Chem. Commun 333 (2007) and refs. therein.Search in Google Scholar PubMed

23c 10.1055/s-0028-1083164, S.sF. Kirsch. Synthesis 3183 (2008).Search in Google Scholar

24a 10.1039/b615629k, A. S. K. Hashmi, M. Rudolph. Chem. Soc. Rev.37, 1766 (2008).Search in Google Scholar PubMed

24b 10.1039/b816696j, A. Fürstner. Chem. Soc. Rev.38, 3208 (2009).Search in Google Scholar PubMed

25a 10.1002/chem.200601324, C. Ferrer, C. H. M. Amijs, A. M. Echavarren. Chem.—Eur. J.13, 1358 (2007).Search in Google Scholar PubMed

25b 10.1016/j.tet.2009.08.067, C. Ferrer, A. Escribano-Cuesta, A. M. Echavarren. Tetrahedron65, 9015 (2009).Search in Google Scholar

26 10.1021/ol100153h, For a similar Au-catalyzed synthetic approach based on C(2)-alkynyl indoles, see: Y. Liu, W. Xu, X. Wang. Org. Lett.12, 1448 (2010).Search in Google Scholar PubMed

27a 10.1021/ja042257t, C. Nieto-Oberhuber, S. Lòpez, A. M. Echavarren. J. Am. Chem. Soc.127, 6178 (2005).Search in Google Scholar PubMed

27b 10.1002/anie.200601688, E. Herrero-Gómez, C. N. Oberhuber, S. Lòpez, J. Benet-Buchholz, A. M. Echavarren. Angew. Chem., Int. Ed.45, 5455 (2006).Search in Google Scholar PubMed

28 10.1039/c1cc12328a, G. Cera, P. Crispino, M. Monari, M. Bandini. Chem. Commun.47, 7803 (2011).Search in Google Scholar PubMed

29 The 6-endo-dig mechanism seems not structurally accessible for compounds 6-type, owing to the limited length of the side chain.Search in Google Scholar

30 Analogous regiochemical response was reported in literature in the Au-catalyzed hydroindolination of unfunctionalized internal alkynes (see ref. [23]).Search in Google Scholar

Online erschienen: 2012-2-3
Erschienen im Druck: 2012-2-3

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-09-05/html
Scroll to top button