Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 84, Issue 8

Issues

Pd/TOMPP-catalyzed telomerization of 1,3-butadiene: From biomass-based substrates to new mechanistic insights

Peter J. C. Hausoul
  • Corresponding author
  • Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pieter C. A. Bruijnincx
  • Corresponding author
  • Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bert M. Weckhuysen
  • Corresponding author
  • Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert J. M. Klein Gebbink
  • Corresponding author
  • Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-05-24 | DOI: https://doi.org/10.1351/PAC-CON-11-12-06

Studies aimed at synthesizing surfactants from biomass-based feedstocks using Pd-catalyzed telomerization of 1,3-butadiene resulted in the development of a highly active catalyst system. A ligand screening was performed, and Pd/tris(2-methoxyphenyl)phosphine (TOMPP) was identified as the most promising catalyst. A solvent- and base-free protocol was developed, which allows efficient and selective conversion of a wide variety of polyol substrates (e.g., glycerol, diols, carbohydrates, and sugar alcohols). In the case of hemi-acetal bearing sugars, catalyst deactivation was observed and mechanistic studies showed that extensive formation of ligand-derived phosphonium species depleted the amount of available ligand. Stoichiometric coordination reactions gave insight into the phosphine alkylation mechanism and demonstrated the reversibility of the observed reaction. A simple and efficient one-pot synthesis method was developed for the preparation of [Pd((1-3,7,8η)-(E)-octa-2,7-dien-1-yl)(PR3)]+ complexes, which are key reactive intermediates. Based on these studies, an extended telomerization mechanism is proposed, which accounts for the formation of ligand-derived phosphonium species and the reversibility of reaction pathways.

Keywords: biomass; palladium catalysis; telomerization

Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-16), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 16th, Shanghai, China, 2011-07-24–2011-07-28

References

  • 1

    , A. Corma, S. Iborra, A. Velty. Chem. Rev.107, 2411 (2007).CrossrefGoogle Scholar

  • 2

    , J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen. Chem. Rev.110, 3552 (2010).CrossrefGoogle Scholar

  • 3a

    J. A. Melero, G. Vicente, G. Morales, M. Paniagua, J. M. Moreno, R. Roldán, A. Ezguerro, G. Pérez. Appl. Catal., A346, 44 (2008).Google Scholar

  • 3b

    C. Klepáčová, D. Mravec, M. Bajus. Appl. Catal., A294, 141 (2005).Google Scholar

  • 3c

    C. Klepáčová, D. Mravec, A. Kaszonyi, M. Bajus. Appl. Catal., A328, 1 (2007).Google Scholar

  • 3d

    R. S. Karinen, A. O. I. Krause. Appl. Catal., A306, 128 (2006).Google Scholar

  • 3e

    , A. Behr, L. Obendorf. Chem.-Ing.-Tech.73, 1463 (2001).CrossrefGoogle Scholar

  • 3f

    , A. Behr, J. Eilting, K. Irawadi, J. Leschinki, F. Lindner. Green Chem.10, 13 (2008).CrossrefGoogle Scholar

  • 4a

    , A. Behr, M. Becker, T. Beckmann, L. Johnen, J. Leschinski, S. Reyer. Angew. Chem., Int. Ed.48, 3598 (2009).CrossrefGoogle Scholar

  • 4b

    , S. Bouquillon, J. Muzart, C. Pinel, F. Rataboul. Top. Curr. Chem.295, 93 (2010).CrossrefGoogle Scholar

  • 5a

    , A. M. Ruppert, A. N. Parvulescu, M. Arias, P. J. C. Hausoul, P. C. A. Bruijnincx, R. J. M. Klein Gebbink, B. M. Weckhuysen. J. Catal.268, 251 (2009).CrossrefGoogle Scholar

  • 5b

    , A. N. Parvulescu, D. Mores, E. Stavitski, C. M. Teodorescu, P. C. A. Bruijnincx, R. J. M. Klein Gebbink, B. M. Weckhuysen. J. Am. Chem. Soc.132, 10429 (2010).CrossrefGoogle Scholar

  • 6a

    , R. Palkovits, I. Nieddu, R. J. M. Klein Gebbink, B. M. Weckhuysen. ChemSusChem1, 193 (2008).CrossrefGoogle Scholar

  • 6b

    , R. Palkovits, I. Nieddu, C. A. Kruithof, R. J. M. Klein Gebbink, B. M. Weckhuysen. Chem.—Eur. J.14, 8995 (2008).CrossrefGoogle Scholar

  • 6c

    , R. Palkovits, A. N. Parvulescu, P. J. C. Hausoul, C. A. Kruithof, R. J. M. Klein Gebbink, B. M. Weckhuysen. Green Chem.11, 1155 (2009).CrossrefGoogle Scholar

  • 6d

    , P. J. C. Hausoul, P. C. A. Bruijnincx, R. J. M. Klein Gebbink, B. M. Weckhuysen. ChemSusChem2, 855 (2009).CrossrefGoogle Scholar

  • 7

    , A. N. Parvulescu, P. J. C. Hausoul, P. C. A. Bruijnincx, R. J. M. Klein Gebbink, B. M. Weckhuysen. Catal. Today158, 130 (2010).CrossrefGoogle Scholar

  • 8a

    , P. J. C. Hausoul, A. N. Parvulescu, M. Lutz, A. L. Spek, P. C. A. Bruijnincx, B. M. Weckhuysen, R. J. M. Klein Gebbink. Angew. Chem., Int. Ed.49, 7972 (2010).CrossrefGoogle Scholar

  • 8b

    , P. J. C. Hausoul, A. N. Parvulescu, M. Lutz, A. L. Spek, P. C. A. Bruijnincx, R. J. M. Klein Gebbink, B. M. Weckhuysen. ChemCatChem3, 845 (2011).CrossrefGoogle Scholar

  • 9

    Y. Tokitoh, T. Higashi, K. Hino, M. Murasawa, N. Yoshimura (Kuraray). U.S. Patent 5118885 (1992).Google Scholar

  • 10a

    J. Briggs, J. Patton, S. Vermaire-Louw, P. Margl, H. Hagen, D. Beigzadeh. (Dow Global Technologies, Inc.). WO 2010019360 (2010).Google Scholar

  • 10b

    P. Van Leeuwen, M. Tschan, E. J. Garcia-Suarez, Z. Freixa, H. Hagen, (DOW). WO 2010120846 A2 (2010).Google Scholar

  • 11

    , J. A. Kenar. Lipid Tech.19, 249 (2007).CrossrefGoogle Scholar

  • 12a

    , A. Behr, M. Urschey. Adv. Synth. Catal.345, 1242 (2003).CrossrefGoogle Scholar

  • 12b

    , A. Behr, J. Leschinski, C. Awungacha, S. Simic, T. Knoth. ChemSusChem2, 71 (2009).CrossrefGoogle Scholar

  • 13

    , T. Prinz, B. Driessen-Hölscher. Chem.—Eur. J.5, 206 (1999).CrossrefGoogle Scholar

  • 14

    , B. Estrine, S. Bouquillon, F. Hénin, J. Muzart. Eur. J. Org. Chem. 2914 (2004).CrossrefGoogle Scholar

  • 15a

    , M. J.-L. Tschan, E. J. Garcia-Suarez, Z. Freixa, H. Launay, H. Hagen, J. Benet-Buchholz, P. W. N. M. van Leeuwen. J. Am. Chem. Soc.132, 6463 (2010).CrossrefGoogle Scholar

  • 15b

    , M. J.-L. Tschan, J.-M. Lopez-Valbuena, Z. Freixa, H. Launay, H. Hagen, J. Benet-Buchholz, P. W. N. M. van Leeuwen. Organometallics30, 792 (2011).CrossrefGoogle Scholar

  • 15c

    , J. R. Briggs, H. Hagen, J. Samir, J. T. Patton. J. Organomet. Chem.696, 1677 (2011).CrossrefGoogle Scholar

  • 16a

    H. Fukutani, M. Tokizawa, Y. Nishikawa, H. Okada, (Mitsubishi). JP 48039413 (1973).Google Scholar

  • 16b

    K. Matsuzaki, R. Tsumura, T. Sakamoto, (Mitsui). JP 49031965 (1974).Google Scholar

  • 16c

    S. Enomoto, Y. Ohmura, H. Wada, Y. Mukaida, M. Yanaka, H. Takita, (Kureha). JP 51142532 (1976).Google Scholar

  • 17a

    , H. S. Broadbent, G. C. Campbell, W. J. Bartley, J. H. Johnson. J. Org. Chem.24, 1847 (1959).CrossrefGoogle Scholar

  • 17b

    T. C. Forschner, J. B. Powell, L. H. Slaugh, P. R. Weider. WO 2000/018712 (2000).Google Scholar

  • 17c

    , U. Herrmann, G. Emig. Ind. Eng. Chem. Res.36, 2885 (1997).CrossrefGoogle Scholar

  • 17d

    N. S. Dunn-Coleman, M. Diaz-Torres, M. W. Chase, D. Trimbur. WO 98/21341 (1998).Google Scholar

  • 17e

    , J. van Haveren, E. L. Scott, J. Sanders. Biofuels, Bioprod. Bioref.2, 41 (2008).CrossrefGoogle Scholar

  • 18a

    U. M. Dzhemilev, R. V. Kunakova, N. Z. Baibulatova, G. A. Tolstikov, A. A. Panasenko. Zh. Org. Khim.16, 1157 (1980).Google Scholar

  • 18b

    , K. Kaneda, H. Kurosaki, M. Terasawa, T. Imanaka, S. Teranishi. J. Org. Chem.46, 2356 (1981).CrossrefGoogle Scholar

  • 18c

    A. Behr, M. Urshey. J. Mol. Catal., A197, 101 (2003).Google Scholar

  • 18d

    , A. Behr, M. Urshey, V. A. Brehme. Green Chem.5, 198 (2003).CrossrefGoogle Scholar

  • 19a

    B. Gruber, K. J. Weese, H. P. Mueller, K. Hill, A. Behr, J. R. Tucker, S. M. Hoagland, (Henkel). WO 92/01702 (1992).Google Scholar

  • 19b

    K. Hill, K. J. Weese. DE 4242467 (1993).Google Scholar

  • 19c

    I. Pennequin, A. Mortreux, F. Petit, J. Mentech, B. Thiriet. FR 19940107 (Eridania Beghin Say) Brev. Fr. (1994).Google Scholar

  • 20

    I. Pennequin, A. Mortreux, F. Petit, J. Mentech, B. Thiriet. FR 2693188 (1994).Google Scholar

  • 21a

    , S. M. Maddock, M. G. Finn. Organometallics19, 2684 (2000).CrossrefGoogle Scholar

  • 21b

    M. Toshihiko, T. Yasuo, Y. Noraiki. EP 296550 (1988).Google Scholar

  • 21c

    Y. Kazuyuki, S. Kenji, M. Masahiro, F. Junichi, S. Shigeaki. EP 1249455 (2002).Google Scholar

  • 21d

    Y. Kazuyuki, S. Shigeaki. JP 2002371090 (2002).Google Scholar

  • 21e

    A. Behr, J. Leschinski, A. Prinz, M. Stoffers. Chem. Eng. Process48, 1140 (2009).Google Scholar

  • 21f

    , J.-M. Basset, D. Bouchu, G. Godard, I. Karamé, E. Kuntz, F. Lefebvre, N. Legagneux, C. Lucas, D. Michelet, J. B. Tommasino. Organometallics27, 4300 (2008).CrossrefGoogle Scholar

  • 21g

    , E. Kuntz, J.-M. Basset, D. Bouchu, G. Godard, F. Lefebvre, N. Legagneux, C. Lucas, D. Michelet. Organometallics29, 523 (2010).CrossrefGoogle Scholar

  • 22a

    , R. Benn, P. W. Jolly, R. Mynott, B. Raspel, G. Schenker, K. P. Schick, G. Schroth. Organometallics4, 1945 (1985).CrossrefGoogle Scholar

  • 22b

    , P. W. Jolly, R. Mynott, B. Raspel, K. P. Schick. Organometallics5, 473 (1986).CrossrefGoogle Scholar

  • 22c

    , F. Vollmüller, J. Krause, S. Klein, W. Mägerlein, M. Beller. Eur. J. Inorg. Chem. 1825 (2000).CrossrefGoogle Scholar

About the article

Published Online: 2012-05-24

Published in Print: 2012-05-24


Citation Information: Pure and Applied Chemistry, Volume 84, Issue 8, Pages 1713–1727, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-11-12-06.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thiemo A. Faßbach, Sebastian Püschel, Arno Behr, Steffen Romanski, Dirk Leinweber, and Andreas J. Vorholt
Chemical Engineering Science, 2018
[2]
Aurélien Herbinski, Estelle Métay, Eric Da Silva, Estelle Illous, Jean-Marie Aubry, and Marc Lemaire
Green Chemistry, 2018
[3]
Thiemo A. Faßbach, Robin Kirchmann, Arno Behr, and Andreas J. Vorholt
Green Chem., 2017
[4]
Thiemo A. Faßbach, Robin Kirchmann, Arno Behr, Steffen Romanski, Dirk Leinweber, and Andreas J. Vorholt
Journal of Molecular Catalysis A: Chemical, 2016, Volume 423, Page 526
[5]
Peter J. C. Hausoul, Pieter C. A. Bruijnincx, Bert M. Weckhuysen, and Robert J. M. Klein Gebbink
ChemInform, 2013, Volume 44, Number 9, Page no

Comments (0)

Please log in or register to comment.
Log in