Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 1

Issues

Hydrophobicity with atomic resolution: Steady-state and ultrafast X-ray absorption and molecular dynamics studies

Thomas J. Penfold
  • Corresponding author
  • Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Chimie et Biochimie Computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christopher J. Milne
  • Corresponding author
  • Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivano Tavernelli
  • Corresponding author
  • Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Chimie et Biochimie Computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Majed Chergui
  • Corresponding author
  • Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-31 | DOI: https://doi.org/10.1351/PAC-CON-12-04-02

Static and time-resolved X-ray absorption spectroscopy (XAS) is used to probe the solvent shell structure around iodide and iodine. In particular, we characterize the changes observed upon electron abstraction of aqueous iodide, which reflects the transition from hydrophilic to hydrophobic solvation after impulsive electron abstraction from iodide. The static spectrum of aqueous iodide, which is analyzed using quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, indicates that the hydrogens of the closest water molecules point toward the iodide, as expected for hydrophilic solvation. In addition, these simulations demonstrate a small anisotropy in the solvent shell. Following electron abstraction, most of the water molecules move away from iodine, while one comes closer to form a complex with it that survives for 3–4 ps. This lifetime is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform a hydrogen bond network in the hydrophobic solvation shell.

Keywords: halides; hydrophobicity; ultrafast spectroscopy; X-ray absorption spectroscopy; X-ray structure

Conference

International Conference on Solution Chemistry (ICSC-32), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 32nd, La Grande Motte, France, 2011-08-28–2011-09-02

References

  • 1

    , L. R. Pratt, A. Pohorille. Chem. Rev.102, 2671 (2002).CrossrefGoogle Scholar

  • 2

    , K. A. Dill, T. M. Truskett, V. Vlachy, B. Hribar-Lee. Annu. Rev. Biophys. Biomol. Struct.34, 173 (2005).CrossrefGoogle Scholar

  • 3

    , G. Galli. Proc. Natl. Acad. Sci. USA104, 2557 (2007).CrossrefGoogle Scholar

  • 4

    , B. J. Berne, J. D. Weeks, R. Zhou. Annu. Rev. Phys. Chem.60, 85 (2009).CrossrefGoogle Scholar

  • 5

    , S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, S. H. Lee. J. Phys. Chem. B102, 4193 (1998).CrossrefGoogle Scholar

  • 6

    , R. M. Lynden-Bell, W. A. Steele. J. Phys. Chem.88, 6514 (1984).CrossrefGoogle Scholar

  • 7

    , S. L. Lee, J. C. Rashaiah. J. Chem. Phys.101, 6964 (1994).CrossrefGoogle Scholar

  • 8

    , S. L. Lee, J. C. Rashaiah. J. Phys. Chem.100, 1420 (1996).CrossrefGoogle Scholar

  • 9

    , C. Bressler, M. Chergui. Annu. Rev. Phys. Chem.61, 263 (2010).CrossrefGoogle Scholar

  • 10

    , M. Chergui. Acta Crystallogr., Sect. A66, 229 (2010).CrossrefGoogle Scholar

  • 11

    , C. Bressler, R. Abela, M. Chergui. Z. Kristallogr.223, 308 (2008).CrossrefGoogle Scholar

  • 12

    , C. Bressler, C. Milne, V. T. Pham, A. El Nahhas, R. M. van der Veen, W. Gawelda, S. L. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, M. Chergui. Science323, 489 (2009).CrossrefGoogle Scholar

  • 13

    , M. Saes, F. van Mourik, W. Gawelda, M. Kaiser, M. Chergui, C. Bressler, D. Grolimund, R. Abela, T. E. Glover, P. Heimann, R. W. Schoenlein, S. L. Johnson, A. M. Lindenberg, R. W. Falcone. Rev. Sci. Instrum.75, 24 (2004).CrossrefGoogle Scholar

  • 14

    , V. T. Pham, I. Tavernelli, C. J. Milne, R. M. van der Veen, P. D’Angelo, C. Bressler, M. Chergui. Chem. Phys.371, 24 (2010).CrossrefGoogle Scholar

  • 15

    , V. T. Pham, T. J. Penfold, R. M. van der Veen, F. Lima, A. El Nahhas, S. L. Johnson, P. Beaud, R. Abela, C. Bressler, I. Tavernelli, C. J. Milne, M. Chergui. J. Am. Chem. Soc.133, 12740 (2011).CrossrefGoogle Scholar

  • 16

    , P. Beaud, S. Johnson, A. Streun, R. Abela, D. Abramsohn, D. Grolimund, F. Krasniqi, T. Schmidt, V. Schlott, G. Ingold. Phys. Rev. Lett.99, 174801 (2007).CrossrefGoogle Scholar

  • 17

    , A. Laio, J. VandeVondele, U. Rothlisberger. J. Phys. Chem. B106, 7300 (2002).CrossrefGoogle Scholar

  • 18

    , A. Laio, J. VandeVondele, U. Rothlisberger. J. Chem. Phys.116, 6941 (2002).CrossrefGoogle Scholar

  • 19

    U. Rothlisberger, P. Carloni. Lect. Notes Phys.704, 437 (2006).Google Scholar

  • 20

    , E. Brunk, N. Ashari, P. Athri, P. Campomanes, B. F. E. Curchod, P. Diamantis, M. Doemer, J. Garrec, A. Laktionov, M. Micciarelli, M. Neri, G. Palermo, T. J. Penfold, S. Vanni, I. Tavernelli, U. Rothlisberger. Chimia65, 667 (2011).CrossrefGoogle Scholar

  • 21

    T. J. Penfold, I. Tavernelli, M. Doemer, U. Rothlisberger, M. Chergui. Chem. Phys. Submitted for publication.Google Scholar

  • 22

    , H. Tanida, K. Kato, I. Watanabe. Bull. Chem. Soc. Jpn.76, 1735 (2003).CrossrefGoogle Scholar

  • 23

    , C. J. Wick, S. S. Xantheas. J. Phys. Chem. B113, 4141 (2009).CrossrefGoogle Scholar

  • 24

    , V. T. Pham, W. Gawelda, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S. L. Johnson, R. Abela, C. Bressler, M. Chergui. J. Am. Chem. Soc.129, 1530 (2007).CrossrefGoogle Scholar

  • 25

    , M. D. Sevilla, S. Summerfield, I. Eliezer, J. Rak, M. C. R. Symons. J. Phys. Chem. A101, 2910 (1997).CrossrefGoogle Scholar

  • 26

    , C. G. Elles, I. A. Shkrob, R. A. Crowell, D. A. Arms, E. C. Landahl. J. Chem. Phys.128, 061102 (2008).CrossrefGoogle Scholar

  • 27

    , I. Mayer. Int. J. Quantum Chem.26, 151 (1984).CrossrefGoogle Scholar

  • 28

    , F. M. Bickelhaupt, A. Diefenbach, S. P. de Visser, L. J. de Koning, N. M. M. Nibber-ing. J. Phys. Chem. A102, 9549 (1998).CrossrefGoogle Scholar

About the article

Published Online: 2012-08-31

Published in Print: 2012-08-31


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 1, Pages 53–60, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-12-04-02.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Majed Chergui and Eric Collet
Chemical Reviews, 2017, Volume 117, Number 16, Page 11025
[2]
C. Bressler, W. Gawelda, A. Galler, M. M. Nielsen, V. Sundström, G. Doumy, A. M. March, S. H. Southworth, L. Young, and G. Vankó
Faraday Discuss., 2014, Volume 171, Page 169

Comments (0)

Please log in or register to comment.
Log in