Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 10

Issues

Towards solvent-controlled reactivity in ionic liquids

Hon Man Yau / Sinead T. Keaveney / Bradley J. Butler / Eden E. L. Tanner / Max S. Guerry / Stephen R. D. George / Michelle H. Dunn / Anna K. Croft
  • Process and Environmental Research Division, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jason B. Harper
Published Online: 2013-04-28 | DOI: https://doi.org/10.1351/pac-con-12-10-22

Ionic liquids are frequently touted as alternatives to traditional molecular solvents but are limited in their applicability as the outcome of reactions may be altered on moving from a molecular to an ionic solvent. This manuscript summarizes our progress towards a predictive framework through understanding how ionic solvents affect organic processes, with an emphasis on how these findings might be applied. Particularly, we will consider the importance of the mole fraction of the ionic liquid used, including some hitherto undisclosed results, as well as the importance of understanding the key interactions of the solvent with the components along the reaction coordinate.

: ionic liquids; reaction control; reaction mechanisms; solvation; solvent effects

Conference

, 2012-09-09 - 2012-09-13, International Conference on Physical Organic Chemistry (ICPOC-21), 21st, Durham, UK

  • J. P. Hallett, T. Welton. Chem. Soc. Rev.111, 3508 (2011).Google Scholar

  • C. L. Hussey. Pure Appl. Chem.60, 1763 (1988). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. H. Dubois, M. J. Zaworotko, P. S. White. Inorg. Chem.28, 2019 (1989). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. S. Wilkes, M. J. Zaworotko. J. Chem. Soc., Chem. Commun.965 (1992). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Bonhôte, A. Das, N. Papageorgiou, K. Kalanasundram, M. Grätzel. Inorg. Chem.35, 1168 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers. Chem. Commun.1765 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Z. El Abedin, F. Endres. Acc. Chem. Res.40, 1106 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. R. Seddon. Kinet. Catal. Engl. Transl.37, 693 (1996).Google Scholar

  • J. B. Harper, M. N. Kobrak. Mini Rev. Org. Chem.3, 253 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. J. Earle, S. P. Katdare, K. R. Seddon. Org. Lett.6, 707 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Zhang, F. Xu, X. Zhou, G. Zhang, C. Wang. Green Chem.9, 1208 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Garima , V. P. Srivastava, L. D. S. Yadav. Tetrahedron Lett.52, 4622 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J.-M. Xu, Q. Wu, Q.-Y. Zhang, F. Zhang, X.-F. Lin. Eur. J. Org. Chem.1798 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • B. C. Ranu, R. Jana, S. Sowmiah. J. Org. Chem.72, 3152 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. B. Smith, J. March. March’s Advanced Organic Chemistry, Wiley-Interscience, New York (2001).Google Scholar

  • A. Aggarwal, N. L. Lancaster, A. R. Sethi, T. Welton. Green Chem.4, 517 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. Crossey, C. Hardacre, M. E. Migaud, S. E. Norman. RSC Adv.2, 2988 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. D. Holbrey, K. R. Seddon. Clean Prod. Proc.1, 223 (1999).Google Scholar

  • L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton. Phys. Chem. Chem. Phys.3, 5192 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. R. Seddon, A. Stark, M. J. Torres. Pure Appl. Chem.72, 2275 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. R. D. George, G. L. Edwards, J. B. Harper. Org. Biomol. Chem.8, 5354 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Pan, L. E. Boyd, J. F. Kruplak, W. E. Cleland, J. S. Wilkes, C. L. Hussey. J. Electrochem. Soc.158, F1 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. P. Swatloski, J. D. Holbrey, R. D. Rogers. Green Chem.5, 361 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. E. Rosella, J. B. Harper. Tetrahedron Lett.50, 992 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. S. Guerry, S. R. D. George, M. H. Dunn, J. B. Harper. Unpublished results.Google Scholar

  • S. T. Keaveney, J. B. Harper. Unpublished results.Google Scholar

  • H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft, J. B. Harper. Org. Biomol. Chem.7, 3572 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • B. J. Butler, J. B. Harper. Unpublished results.Google Scholar

  • B. Y. W. Man, J. M. Hook, J. B. Harper. Tetrahedron Lett.46, 7641 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Müller, J. C. Rossier. J. Chem. Soc., Perkin Trans. 22232 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. M. Yau, S. A. Barnes, J. M. Hook, T. G. A. Youngs, A. K. Croft, J. B. Harper. Chem. Commun.3576 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. G. Jones, H. M. Yau, E. Davies, J. M. Hook, T. G. A. Youngs, J. B. Harper, A. K. Croft. PhysChemChemPhys12, 1873 (2010).Google Scholar

  • C. G. Hanke, A. Johansson, J. B. Harper, R. M. Lynden-Bell. Chem. Phys. Lett.374, 85 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. B. Harper, R. M. Lynden-Bell. Mol. Phys.102, 85 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Crowhurst, N. L. Lancaster, J. M. P. Arlandis, T. Welton. J. Am. Chem. Soc.126, 11549 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. M. Yau, A. K. Croft, J. B. Harper. Faraday Disc.154, 365 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. T. Bowron, C. D’Agostino, L. F. Gladden, C. Hardacre, J. D. Holbrey, M. C. Lagunas, J. McGregor, M. D. Mantle, C. L. Mullan, T. G. A. Youngs. J. Phys. Chem. B114, 7760 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Wulf, K. Fumino, R. Ludwig. Angew. Chem., Int. Ed.49, 449 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • E. E. L. Tanner, H. M. Yau, A. K. Croft, J. B. Harper. Unpublished results.Google Scholar

  • H. M. Yau, S. J. Chan, S. R. D. George, J. M. Hook, A. K. Croft, J. B. Harper. Molecules14, 2521 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Stoppa, J. Hunger, G. T. Hefter, R. Buchner. J. Chem. Phys. B116, 7509 (2012).Google Scholar

About the article

Published Online: 2013-04-28

Published in Print: 2013-10-01


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 10, Pages 1979–1990, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac-con-12-10-22.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alyssa Gilbert, Götz Bucher, Ronald S. Haines, and Jason B. Harper
Organic & Biomolecular Chemistry, 2019
[2]
Orlando Acevedo
The Journal of Physical Chemistry A, 2014, Volume 118, Number 50, Page 11653
[3]
Alexandra Schindl, Matthew L. Hagen, Shafaq Muzammal, Henadira A. D. Gunasekera, and Anna K. Croft
Frontiers in Chemistry, 2019, Volume 7
[5]
Rebecca R. Hawker, Ronald S. Haines, and Jason B. Harper
Journal of Physical Organic Chemistry, 2018, Page e3862
[6]
Rebecca R. Hawker, Ronald S. Haines, and Jason B. Harper
Organic & Biomolecular Chemistry, 2018
[8]
Papiya Dey, Mrunesh Koli, Dibakar Goswami, Anubha Sharma, and Subrata Chattopadhyay
European Journal of Organic Chemistry, 2018, Volume 2018, Number 11, Page 1333
[9]
Bradley J. Butler and Jason B. Harper
Journal of Physical Organic Chemistry, 2018, Page e3819
[10]
Rebecca R. Hawker, Michaela J. Wong, Ronald S. Haines, and Jason B. Harper
Org. Biomol. Chem., 2017, Volume 15, Number 30, Page 6433
[11]
William E. S. Hart, Leigh Aldous, and Jason B. Harper
Org. Biomol. Chem., 2017, Volume 15, Number 26, Page 5556
[12]
Sinead T. Keaveney, Ronald S. Haines, and Jason B. Harper
Pure and Applied Chemistry, 2017, Volume 89, Number 6
[13]
Dibakar Goswami, Mrunesh R. Koli, Sucheta Chatterjee, Subrata Chattopadhyay, and Anubha Sharma
Org. Biomol. Chem., 2017, Volume 15, Number 17, Page 3756
[14]
Sinead T. Keaveney, Ronald S. Haines, and Jason B. Harper
ChemPlusChem, 2017, Volume 82, Number 3, Page 449
[15]
Sinead T. Keaveney, Tamar L. Greaves, Danielle F. Kennedy, and Jason B. Harper
The Journal of Physical Chemistry B, 2016, Volume 120, Number 49, Page 12687
[16]
Sinead T. Keaveney, Karin S. Schaffarczyk McHale, James W. Stranger, Batchimeg Ganbold, William S. Price, and Jason B. Harper
ChemPhysChem, 2016, Volume 17, Number 23, Page 3853
[17]
[18]
Thomas Murphy, Samantha K. Callear, Gregory G. Warr, and Rob Atkin
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 26, Page 17169
[19]
Thomas Murphy, Sam K. Callear, Nageshwar Yepuri, Karina Shimizu, Masayoshi Watanabe, José N. Canongia Lopes, Tamim Darwish, Gregory G. Warr, and Rob Atkin
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 26, Page 17224
[20]
Rebecca R. Hawker, Janjira Panchompoo, Leigh Aldous, and Jason B. Harper
ChemPlusChem, 2016, Volume 81, Number 6, Page 574
[21]
Majd Eshtaya, Andinet Ejigu, Gill Stephens, Darren A. Walsh, George Z. Chen, and Anna K. Croft
Faraday Discuss., 2016, Volume 190, Page 127
[22]
Bradley J. Butler and Jason B. Harper
Journal of Physical Organic Chemistry, 2016, Volume 29, Number 12, Page 700
[23]
Sinead T. Keaveney, Benjamin P. White, Ronald S. Haines, and Jason B. Harper
Org. Biomol. Chem., 2016, Volume 14, Number 8, Page 2572
[24]
Sinead T. Keaveney, Ronald S. Haines, and Jason B. Harper
Org. Biomol. Chem., 2015, Volume 13, Number 33, Page 8925
[25]
Sinead T. Keaveney, Jason B. Harper, and Anna K. Croft
RSC Adv., 2015, Volume 5, Number 45, Page 35709
[26]
Hon Man Yau, Sinead T. Keaveney, Bradley J. Butler, Eden E. L. Tanner, Max S. Guerry, Stephen R. D. George, Michelle H. Dunn, Anna K. Croft, and Jason B. Harper
ChemInform, 2015, Volume 46, Number 16, Page no
[27]
Sinead T. Keaveney, Ronald S. Haines, and Jason B. Harper
Org. Biomol. Chem., 2015, Volume 13, Number 12, Page 3771
[28]
Paulina Pavez, Daniela Millán, Cristian Cocq, José G. Santos, and Faruk Nome
New J. Chem., 2015, Volume 39, Number 3, Page 1953
[29]
Bradley J. Butler and Jason B. Harper
New J. Chem., 2015, Volume 39, Number 1, Page 213
[30]
Barbara Kirchner, Oldamur Hollóczki, José Nuno Canongia Lopes, and Agílio A. H. Pádua
Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, Volume 5, Number 2, Page 202
[31]
Bradley J. Butler, Donald S. Thomas, James M. Hook, and Jason B. Harper
Magnetic Resonance in Chemistry, 2016, Volume 54, Number 6, Page 423
[32]
Sinead T. Keaveney, Karin S. Schaffarczyk McHale, Ronald S. Haines, and Jason B. Harper
Org. Biomol. Chem., 2014, Volume 12, Number 36, Page 7092
[33]
Eden E. L. Tanner, Hon Man Yau, Rebecca R. Hawker, Anna K. Croft, and Jason B. Harper
Organic & Biomolecular Chemistry, 2013, Volume 11, Number 36, Page 6170
[34]
Sinead T. Keaveney and Jason B. Harper
RSC Advances, 2013, Volume 3, Number 36, Page 15698

Comments (0)

Please log in or register to comment.
Log in