Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 4

Issues

Multiple bonds between lead atoms and short bonds between transition metals

Shigeru Nagase
  • Corresponding author
  • Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishihiraki-cho 34-3, Sakyo-ku, Kyoto 606-8103, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-29 | DOI: https://doi.org/10.1351/PAC-CON-12-08-04

The heaviest analogues of alkynes are investigated to realize a short triple bond between Pb atoms. For a short double bond between Pb atoms, the Pb2 molecule stabilized by dative N-heterocyclic carbenes is investigated. For unsupported and supported short bonds between transition metals, two-coordinate transition-metal and bicyclic four-membered ring complexes are investigated.

Keywords: alkynes; computational chemistry; main-group atoms; multiple bonds; organometallic chemistry; short bonds; transition metals

Conference

International Conference on Heteroatom Chemistry (ICHAC-10), International Conference on Heteroatom Chemistry, ICHAC, Heteroatom Chemistry, 10th, Kyoto, Japan, 2012-05-20–2012-05-25

References

  • 1

    , For a recent review, see: R. C. Fischer, P. P. Power. Chem. Rev.110, 3877 (2010).CrossrefGoogle Scholar

  • 2

    , A. Sekiguchi, R. Kinjo, M. Ichinohe. Science305, 1755 (2004).CrossrefGoogle Scholar

  • 3a

    , T. Sasamori, K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa, N. Tokitoh. J. Am. Chem. Soc.130, 13856 (2008).CrossrefGoogle Scholar

  • 3b

    , T. Sasamori, J. S. Han, K. Hironaka, N. Takagi, S. Nagase, N. Tokitoh. Pure Appl. Chem.82, 603 (2010).CrossrefGoogle Scholar

  • 4a

    , M. Stender, A. D. Phillips, R. J. Wright, P. P. Power. Angew. Chem., Int. Ed.41, 1785 (2002).CrossrefGoogle Scholar

  • 4b

    , L. Pu, A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead, P. P. Power. J. Am. Chem. Soc.125, 11626 (2003).CrossrefGoogle Scholar

  • 5

    , Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh. J. Am. Chem. Soc.128, 1023 (2006).CrossrefGoogle Scholar

  • 6

    , A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power. J. Am. Chem. Soc.124, 5930 (2002).CrossrefGoogle Scholar

  • 7

    , L. Pu, B. Twamley, P. P. Power. J. Am. Chem. Soc.122, 3524 (2000).CrossrefGoogle Scholar

  • 8a

    , K. Kobayashi, S. Nagase. Organometallics16, 2489 (1997).CrossrefGoogle Scholar

  • 8b

    , S. Nagase, K. Kobayashi, N. Takagi. J. Organomet. Chem.611, 264 (2000).CrossrefGoogle Scholar

  • 8c

    , K. Kobayashi, N. Takagi, S. Nagase. Organometallics20, 234 (2001).CrossrefGoogle Scholar

  • 8d

    , N. Takagi, S. Nagase. Organometallics20, 5498 (2001).CrossrefGoogle Scholar

  • 8e

    , N. Takagi, S. Nagase. Chem. Lett. 966 (2001).CrossrefGoogle Scholar

  • 8f

    , N. Takagi, S. Nagase. Eur. J. Inorg. Chem. 2775 (2002).CrossrefGoogle Scholar

  • 8g

    , N. Takagi, S. Nagase. J. Organomet. Chem.692, 217 (2007).CrossrefGoogle Scholar

  • 9

    Stabilization of REER due to trans-bending is ascribed to the mixing of the low-lying vacant σ* orbital into the in-plane πin orbital, known as a second-order Jahn–Teller effect. The mixing of the antibonding σ* orbital is enhanced, as the E atom becomes heavier. It makes the bonding πin orbital slipped and weakened.Google Scholar

  • 10a

    Y. Chen, M. Hartmann, M. Diedenhofen, G. Frenking. Angew. Chem., Int. Ed.40, 2052 (2001); for a theoretical study of two trans-bent forms of RPbPbR, see also.Google Scholar

  • 10b

    , M. Lein, A. Krapp, G. Frenking. J. Am. Chem. Soc.127, 6290 (2005).CrossrefGoogle Scholar

  • 11

    Bond order is often discussed to characterize bond multiplicity and strength, though it is an artificial index. Because the two dative bonds in mode a are weak, the Pb–Pb bond order is less than three. However, we prefer to call the Pb–Pb bond a triple bond, because there are three bonds between the Pb atoms. Bond order is not always correlated to bond strength, unlike the carbon cases.Google Scholar

  • 12

    , N. Takagi, S. Nagase. Organometallics26, 3627 (2007).CrossrefGoogle Scholar

  • 13

    It should be described that the energy of the triply bonded structure of Ar*PbPbAr* is not sensitive to the dihedral angle (ω). For example, the structure optimized by fixing the angle at ω = 140º is only 0.7 kcal/mol less stable than the fully optimized structure (ω = 119.8º). The two absorptions of 420 and 752 nm calculated for ω = 140º are closer to the experimental values of 397 and 719 nm.Google Scholar

  • 14a

    , K. W. Klinkhammer, T. F. Fässler, H. Grützmacher. Angew. Chem., Int. Ed.37, 124 (1998).CrossrefGoogle Scholar

  • 14b

    , M. Stürmann, M. Weidenbruch, K. W. Klinkhammer, F. Lissner, H. Marsmann. Organometallics17, 4425 (1998).CrossrefGoogle Scholar

  • 14c

    , M. Stürmann, W. Saak, H. Marsmann, M. Weidenbruch. Angew. Chem., Int. Ed.38, 187 (1999).CrossrefGoogle Scholar

  • 14d

    , M. Stürmann, W. Saak, M. Weidenbruch, K. W. Klinkhammer. Eur. J. Inorg. Chem. 579 (1999).CrossrefGoogle Scholar

  • 14e

    , K. Klinkhammer. Polyhedron 587 (2002).CrossrefGoogle Scholar

  • 14f

    , S. Hino, M. Olmstead, A. D. Phillips, R. J. Wright, P. P. Power. Inorg. Chem.43, 7346 (2004).CrossrefGoogle Scholar

  • 15

    , N. Takagi, S. Nagase. Organometallics26, 469 (2007).CrossrefGoogle Scholar

  • 16

    , R. C. Fischer, L. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power. J. Am. Chem. Soc.128, 11366 (2006).CrossrefGoogle Scholar

  • 17

    , For other examples, see: Y. Peng, R. C. Fischer, W. A. Merrill, J. Fischer, L. Pu, B. D. Ellis, J. C. Fettinger, R. H. Herber, P. P. Power. Chem. Sci.1, 461 (2010).CrossrefGoogle Scholar

  • 18

    For recent reviews, see.Google Scholar

  • 18a

    , Y. Wang, G. H. Robinson. Inorg. Chem.50, 12326 (2011).CrossrefGoogle Scholar

  • 18b

    , Y. Wang, G. H. Robinson. Dalton Trans.41, 337 (2012).CrossrefGoogle Scholar

  • 19

    , Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. Science321, 1069 (2008).CrossrefGoogle Scholar

  • 20

    , A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking. Angew. Chem., Int. Ed.48, 9701 (2009).CrossrefGoogle Scholar

  • 21

    For the P2 case, see.Google Scholar

  • 21a

    , Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. J. Am. Chem. Soc.130, 14970 (2008);CrossrefGoogle Scholar

  • 21b

    , for the As2 case, see: M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. Chem.—Eur. J.16, 432 (2010);CrossrefGoogle Scholar

  • 21c

    , for the B2 case, see: H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas. Science336, 1420 (2012).CrossrefGoogle Scholar

  • 21d

    , N. Holzmann, A. Stasch, C. Jones, G. Frenking. Chem.—Eur. J.17, 13517 (2011).CrossrefGoogle Scholar

  • 22

    The size difference between valence s and p orbitals becomes the largest for the heaviest Pb atom [8b]. Therefore, the Pb atom is most reluctant to form hybrid orbitals. It should be noted in Fig. 5b that no hybrid orbital is required for the Pb atom.Google Scholar

  • 23

    , C. A. Dyker, G. Bertrand. Science321, 1050 (2008).CrossrefGoogle Scholar

  • 24

    For the linear structure, hybrid orbitals are required for the Pb atom.Google Scholar

  • 25

    The Pb2 molecule has the triplet ground state (3Σg–), as do Si2 and Ge2. For the interaction shown in Fig. 5b, Pb2 must be excited to the singlet state (1∆g).Google Scholar

  • 26

    , H. Lei, J.-D. Guo, J. C. Fettinger, S. Nagase, P. P. Power. J. Am. Chem. Soc.132, 17399 (2010).CrossrefGoogle Scholar

  • 27

    , For a highlight article, see: P. L. Holland. Angew. Chem., Int. Ed.50, 6213 (2011).CrossrefGoogle Scholar

  • 28

    Dissociation on the quintet potential energy surface, which leads to excited sextet R*Fe and ground doublet Fe(η5-C5H5)(CO)2 states, is 59.3 kcal/mol endothermic.Google Scholar

  • 29a

    , F. A. Cotton, L. M. Daniels, L. R. Falvello, J. H. Matonic, C. A. Murillo. Inorg. Chim. Acta256, 269 (1997).CrossrefGoogle Scholar

  • 29b

    , F. A. Cotton, L. M. Daniels, J. H. Matonic, C. A. Murillo. Inorg. Chim. Acta256, 277 (1997);CrossrefGoogle Scholar

  • 29c

    , for a significantly shorter Fe–Fe bond distance of 2.127 Å reported recently, see: L. Fohlmeister, S. Liu, C. Schulten, B. Moubaraki, A. Stasch, J. D. Cashion, K. S. Murray, L. Gagliardi, C. Jones. Angew. Chem., Int. Ed.51, 8294 (2012).CrossrefGoogle Scholar

  • 30

    T. Kuwabara, M. Saito, J.-D. Guo, S. Nagase. Unpublished results.Google Scholar

  • 31

    , T. Takao, M. Amako, H. Suzuki. Organometallics22, 3855 (2003).CrossrefGoogle Scholar

  • 32

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09 (Revision A.01), Gaussian, Inc., Wallingford, CT (2009).Google Scholar

  • 33a

    , A. D. Becke. Phys. Rev. A38, 3098 (1988).CrossrefGoogle Scholar

  • 33b

    , A. D. Becke. J. Chem. Phys.98, 5648 (1933).CrossrefGoogle Scholar

  • 34

    , C. Lee, W. Wang, R. G. Parr. Phys. Rev. B37, 785 (1988).CrossrefGoogle Scholar

  • 35a

    , W. R. Wadt, P. J. Hay. J. Chem. Phys.82, 284 (1985).CrossrefGoogle Scholar

  • 35b

    , P. J. Hay, W. R. Wadt. J. Chem. Phys.82, 299 (1985).CrossrefGoogle Scholar

  • 36

    , M. N. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople. J. Chem. Phys.77, 3654 (1982).CrossrefGoogle Scholar

  • 37

    , J. P. Perdew, Y. Wang. Phys. Rev. B45, 13244 (1922).CrossrefGoogle Scholar

About the article

Published Online: 2012-12-29

Published in Print: 2012-12-31


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 4, Pages 649–659, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-12-08-04.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christine Lepetit, Pierre Fau, Katia Fajerwerg, Myrtil L. Kahn, and Bernard Silvi
Coordination Chemistry Reviews, 2017, Volume 345, Page 150

Comments (0)

Please log in or register to comment.
Log in