Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 5

Issues

New ligand platforms featuring boron-rich clusters as organomimetic substituents

Alexander M. Spokoyny
  • Corresponding author
  • Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-29 | DOI: https://doi.org/10.1351/PAC-CON-13-01-13

200 years of research with carbon-rich molecules have shaped the development of modern chemistry. Research pertaining to the chemistry of boron-rich species has historically trailed behind its more distinguished neighbor (carbon) in the periodic table. Notably, a potentially rich and, in many cases, unmatched field of coordination chemistry using boron-rich clusters remains fundamentally underdeveloped. Our work has been devoted to examining several basic concepts related to the functionalization of icosahedral boron-rich clusters and their use as ligands, aimed at designing fundamentally new hybrid molecular motifs and materials. Particularly interesting are icosahedral carboranes, which can be regarded as 3D analogs of benzene. These species comprise a class of boron-rich clusters that were discovered in the 1950s during the “space race” while researchers were developing energetic materials for rocket fuels. Ultimately, the unique chemical and physical properties of carborane species, such as rigidity, indefinite stability to air and moisture, and 3D aromaticity, may allow one to access a set of properties not normally available in carbon-based chemistry. While technically these species are considered as inorganic clusters, the chemical properties they possess make these boron-rich species suitable for replacing and/or altering structural and functional features of the organic and organometallic molecules—a phenomenon best described as “organomimetic”. Aside from purely fundamental features associated with the organomimetic chemistry of icosahedral carboranes, their use can also provide new avenues in the development of systems relevant to solving current problems associated with energy production, storage, and conversion.

Keywords: boron clusters; dicarbollides; dye-sensitized solar cells; icosahedral carboranes; ligand design; metal–organic frameworks; organomimetic chemistry

References

  • 1

    A. Stock. Hydrides of Boron and Silicon (The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University), Cornell University Press, Ithaca, NY (1933).Google Scholar

  • 2

    , W. H. Brock, K. H. Jensen, C. K. Jørgensen. Polyhedron2, 1 (1983).CrossrefGoogle Scholar

  • 3a

    W. N. Lipscomb. The Boranes and Their Relatives, Nobel Lecture, December 11, 1976.Google Scholar

  • 3b

    E. Muetterties. Boron Hydride Chemistry, Academic Press, New York (1975).Google Scholar

  • 4

    , M. Ephritikhine. Chem. Rev.97, 2193 (1997).CrossrefGoogle Scholar

  • 5

    , H. I. Schlesinger, H. C. Brown, B. Abraham, A. C. Bond, N. Davidson, A. E. Finholt, J. R. Gilbreath, H. Hoekstra, L. Horvitz, E. K. Hyde, J. J. Katz, J. Knight, R. A. Lad, D. L. Mayfield, L. Rapp, D. M. Ritter, A. M. Schwartz, I. Sheft, L. D. Tuck, A. O. Walker. J. Am. Chem. Soc.75, 186 (1953).CrossrefGoogle Scholar

  • 6

    , H. C. Brown, B. C. Rao. J. Org. Chem.22, 1137 (1957).CrossrefGoogle Scholar

  • 7

    Biographical Memoirs of the National Academy of Sciences, Vol. 64, pp. 368–396, The National Academies Press, Washington, DC (1994).Google Scholar

  • 8

    R. Grimes. Carboranes, 2nd ed., Elsevier (2011).Google Scholar

  • 9

    Original synthesis.Google Scholar

  • 9a

    , A. R. Pitochelli, M. F. Hawthorne. J. Am. Chem. Soc.82, 3228 (1960); recently optimized process amenable to laboratory synthesis.CrossrefGoogle Scholar

  • 9b

    , V. Geis, K. Guttsche, H. Scherer, R. Uzun. Dalton Trans. 2687 (2009).CrossrefGoogle Scholar

  • 10

    R. N. Grimes. Metal Interactions with Boron Clusters, Plenum Press, New York (1982).Google Scholar

  • 11

    , Original synthesis: T. L. Heying, J. W. Ager Jr., S. L. Clark, D. J. Mangold, H. L. Goldstein, M. Hillman, R. J. Polak, J. W. Szymanski. Inorg. Chem.2, 1089 (1963).CrossrefGoogle Scholar

  • 12

    , M. Scholz, E. Hey-Hawkins. Chem. Rev.111, 7035 (2011).CrossrefGoogle Scholar

  • 13

    , B. P. Dash, R. Satapathy, J. A. Maguire, N. S. Hosmane. New J. Chem.35, 1955 (2011).CrossrefGoogle Scholar

  • 14

    , F. Issa, M. Kassiou, L. M. Rendina. Chem. Rev.111, 5701 (2011).CrossrefGoogle Scholar

  • 15

    Review article (see references within):Google Scholar

  • 15a

    A. Kraft. Bull. Hist. Chem.33, 61 (2008);Google Scholar

  • 15b

    , structural study (see references within): H. J. Buser, D. Schwarzenbach, W. Petter, A. Ludi. Inorg. Chem.16, 2704 (1977).CrossrefGoogle Scholar

  • 16a

    E. Frankland. Experimental Researches in Pure, Applied and Physical Chemistry, John Van Voorst, London (1877).Google Scholar

  • 16b

    , D. Seyferth. Organometallics20, 2940 (2001).CrossrefGoogle Scholar

  • 17

    , D. F. Shriver. J. Am. Chem. Soc.85, 3509 (1963).CrossrefGoogle Scholar

  • 18

    , G. W. Parshall. J. Am. Chem. Soc.86, 361 (1964).CrossrefGoogle Scholar

  • 19a

    J. S. Merola, J. R. Knorr. Abstracts of Papers, 199th National Meeting of the American Chemical Society, Boston, MA; American Chemical Society, Washington, DC (1990); INOR 392.Google Scholar

  • 19b

    , J. R. Knorr, J. S. Merola. Organometallics9, 3008 (1990).CrossrefGoogle Scholar

  • 19c

    , R. T. Baker, D. W. Ovenall, J. C. Calabrese, S. A. Westcott, N. J. Taylor, I. D. Williams, T. B. Marder. J. Am. Chem. Soc.112, 9399 (1990).CrossrefGoogle Scholar

  • 20

    R. H. Crabtree. The Organometallic Chemistry of the Transition Metals, 3rd ed., John Wiley (2001).Google Scholar

  • 21

    , H. Braunschweig, R. D. Dewhurst, A. Schneider. Chem. Rev.110, 3924 (2010).CrossrefGoogle Scholar

  • 22

    , H. Braunschweig, K. Radacki, A. Schneider. Science328, 345 (2010).CrossrefGoogle Scholar

  • 23

    , J. A. Ibers, R. H. Holm. Science209, 223 (1980).CrossrefGoogle Scholar

  • 24a

    , M. M. Fein, J. E. Paustian, M. Sarakwash. Ind. Eng. Chem. Proc. Des. Dev.5, 380 (1966).CrossrefGoogle Scholar

  • 24b

    , M. M. Fein, J. E. Paustian. Ind. Eng. Chem. Proc. Des. Dev.4, 129 (1965).CrossrefGoogle Scholar

  • 24c

    , J. F. Ditter, E. B. Klusmann, J. D. Oakes, R. D. Williams. Inorg. Chem.9, 889 (1970).CrossrefGoogle Scholar

  • 25

    , S. Papetti, C. Obenland, T. L. Heying. Ind. Eng. Chem. Prod. Res. Dev.5, 334 (1966).CrossrefGoogle Scholar

  • 26a

    , K. Wade. J. Chem. Soc. D 792 (1971).CrossrefGoogle Scholar

  • 26b

    D. M. P. Mingos. Nature236, 99 (1972).Google Scholar

  • 26c

    , A. J. Welch. Chem. Commun.49, 3615 (2013).CrossrefGoogle Scholar

  • 27

    , M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. Schwerin, F. N. Tebbe, P. A. Wegner. J. Am. Chem. Soc.90, 862 (1968).CrossrefGoogle Scholar

  • 28

    B–C bond formation:Google Scholar

  • 28a

    , L. I. Zakharkin, A. I. Kovredov, V. A. Olshevskaya, Z. S. Shaungumbekova. J. Organomet. Chem.226, 217 (1982);CrossrefGoogle Scholar

  • 28b

    , B–O bond formation: K. Z. Kabytaev, S. N. Mukhin, I. V. Glukhov, Z. A. Starikova, V. I. Bregadze, I. P. Beletskaya. Organometallics28, 4758 (2009);CrossrefGoogle Scholar

  • 28c

    , B–N bond formation: S. N. Mukhin, K. Z. Kabytaev, G. G. Zhigareva, I. V. Glukhov, Z. A. Starikova, V. I. Bregadze, I. P. Beletskaya. Organometallics27, 5937 (2008).CrossrefGoogle Scholar

  • 29

    , M. F. Hawthorne, D. C. Young, P. A. Wegner. J. Am. Chem. Soc.87, 1818 (1965).CrossrefGoogle Scholar

  • 30

    , M. F. Hawthorne, G. B. Dunks. Science178, 462 (1972).CrossrefGoogle Scholar

  • 31

    , I. Rojo, F. Teixidor, C. Vi?as, R. Kivekäs, R. Sillanpää. Chem.—Eur. J.9, 4311 (2003).CrossrefGoogle Scholar

  • 32a

    P. González-Cardoso, A. Stoica, P. Farràs, A. Pepiol, C. Viñas, F. Teixidor. Chem.—Eur. J.16, 6660 (2010).CrossrefGoogle Scholar

  • 32b

    , A. Pepiol, F. Teixidor, R. Sillanpää, M. Lupu, C. Viñas. Angew. Chem., Int. Ed.50, 12491 (2011).CrossrefGoogle Scholar

  • 33

    , I. B. Sivaev, V. I. Bregadze. J. Organomet. Chem.614–615, 27 (2000).CrossrefGoogle Scholar

  • 34

    , T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, J. T. Hupp. J. Am. Chem. Soc.132, 4580 (2010).CrossrefGoogle Scholar

  • 35

    , B. O’Regan, M. Grätzel. Nature353, 737 (1991).CrossrefGoogle Scholar

  • 36

    , T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp. Energy Environ. Sci.1, 66 (2008).CrossrefGoogle Scholar

  • 37

    , T. C. Li, F. Fabregat-Santiago, O. K. Farha, A. M. Spokoyny, S. R. Raga, J. Bisquert, C. A. Mirkin, T. J. Marks, J. T. Hupp. J. Phys. Chem. C115, 11257 (2011).CrossrefGoogle Scholar

  • 38

    , A. M. Spokoyny, T. C. Li, O. K. Farha, C. W. Machan, C. She, T. J. Marks, J. T. Hupp, C. A. Mirkin. Angew. Chem., Int. Ed.49, 5339 (2010).CrossrefGoogle Scholar

  • 39

    , K. Tamao, Y. Kiso, K. Sumitani, M. Kumada. J. Am. Chem. Soc.94, 9268 (1972).CrossrefGoogle Scholar

  • 40

    , G.-X. Jin. Coord. Chem. Rev.248, 587 (2004).CrossrefGoogle Scholar

  • 41

    , P. Dröse, C. G. Hrib, F. T. Edelmann. J. Am. Chem. Soc.132, 15540 (2010).CrossrefGoogle Scholar

  • 42

    , D. Liu, L. Dang, Y. Sun, H.-S. Chan, Z. Lin, Z. Xie. J. Am. Chem. Soc.130, 16103 (2008).CrossrefGoogle Scholar

  • 43

    , H. Shen, H.-S. Chan, Z. Xie. Organometallics27, 5309 (2008).CrossrefGoogle Scholar

  • 44

    , H. Wang, Y. Wang, H.-W. Li, Z. Xie. Organometallics20, 5110 (2001).CrossrefGoogle Scholar

  • 45

    , X. Wang, G.-X. Jin. Organometallics23, 6319 (2004).CrossrefGoogle Scholar

  • 46

    , H. Heaney. Chem. Rev.62, 81 (1962).CrossrefGoogle Scholar

  • 47

    , J. D. Roberts, D. A. Semenow, H. E. Simmons Jr., L. A. Carlsmith. J. Am. Chem. Soc.78, 601 (1956).CrossrefGoogle Scholar

  • 48

    , H. L. Gingrich, T. Ghosh, Q. Huang, M. Jones Jr. J. Am. Chem. Soc.112, 4082 (1990).CrossrefGoogle Scholar

  • 49

    , L. Deng, H.-S. Chan, Z. Xie. J. Am. Chem. Soc.128, 7728 (2006).CrossrefGoogle Scholar

  • 50

    , Z. Qiu, S. Ren, Z. Xie. Acc. Chem. Res.44, 299 (2011).CrossrefGoogle Scholar

  • 51

    , H. Jude, H. Disteldorf, S. Fischer, T. Wedge, A. M. Hawkridge, A. M. Arif, M. F. Hawthorne, D. C. Muddiman, P. J. Stang. J. Am. Chem. Soc.127, 12131 (2005).CrossrefGoogle Scholar

  • 52

    , J. R. Long, O. M. Yaghi. Chem. Soc. Rev.38, 1213 (2009) and refs. Cited within.CrossrefGoogle Scholar

  • 53

    , O. K. Farha, J. T. Hupp. Acc. Chem. Res.43, 1166 (2010).CrossrefGoogle Scholar

  • 54

    , O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp. J. Am. Chem. Soc.129, 12680 (2007).CrossrefGoogle Scholar

  • 55

    , Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp, R. Q. Snurr. Chem. Commun. 4135 (2008).CrossrefGoogle Scholar

  • 56

    , O. K. Farha, A. M. Spokoyny, K. L. Mulfort, S. Galli, J. T. Hupp, C. A. Mirkin. Small5, 1727 (2009).CrossrefGoogle Scholar

  • 57

    , Y.-S. Bae, A. M. Spokoyny, O. K. Farha, R. Q. Snurr, J. T. Hupp, C. A. Mirkin. Chem. Commun.46, 3478 (2010).CrossrefGoogle Scholar

  • 58

    , S.-L. Huang, Y.-J. Lin, W.-B. Yu, G.-X. Jin. ChemPlusChem77, 141 (2012).CrossrefGoogle Scholar

  • 59

    , S.-L. Huang, L.-H. Weng, G.-X. Jin. Dalton Trans.41, 11657 (2012).CrossrefGoogle Scholar

  • 60

    , J. Müeller, K. Ba?e, T. F. Magnera, J. Michl. J. Am. Chem. Soc.114, 9721 (1992).CrossrefGoogle Scholar

  • 61

    , A. M. Spokoyny, O. K. Farha, K. L. Mulfort, J. T. Hupp, C. A. Mirkin. Inorg. Chim. Acta364, 266 (2010).CrossrefGoogle Scholar

  • 62a

    , E. L. Hoel, M. F. Hawthorne. J. Am. Chem. Soc.97, 6388 (1975).CrossrefGoogle Scholar

  • 62b

    , Z. Zheng, M. Diaz, C. B. Knobler, M. F. Hawthorne. J. Am. Chem. Soc.117, 12338 (1995).CrossrefGoogle Scholar

  • 62c

    V. N. Kalinin, A. V. Usatov, L. I. Zakharkin. Proc. Indian Natl. Sci. Acad.55, 293 (1989).Google Scholar

  • 63

    D. Morales-Morales, C. M. Jensen. The Chemistry of Pincer Compounds, Elsevier (2007).Google Scholar

  • 64

    , C. Gunanathan, L. J. W. Shimon, D. Milstein. J. Am. Chem. Soc.131, 3146 (2009).CrossrefGoogle Scholar

  • 65

    , J. Zhao, A. S. Goldman, J. F. Hartwig. Science307, 1080 (2005).CrossrefGoogle Scholar

  • 66

    , G. Lin, N. D. Jones, R. A. Gossage, R. McDonald, R. G. Cavell. Angew. Chem., Int. Ed.42, 4054 (2003).CrossrefGoogle Scholar

  • 67

    , A. M. Spokoyny, M. G. Reuter, C. L. Stern, M. A. Ratner, T. Seidman, C. A. Mirkin. J. Am. Chem. Soc.131, 9482 (2009).CrossrefGoogle Scholar

  • 68

    , J. I. Van der Vlugt. Angew Chem., Int. Ed.49, 252 (2010).CrossrefGoogle Scholar

  • 69

    , M. H. El-Zaria, H. Arii, H. Nakamura. Inorg. Chem.50, 4149 (2011).CrossrefGoogle Scholar

  • 70

    , Y. Segawa, M. Yamashita, K. Nozaki. Science314, 113 (2006).CrossrefGoogle Scholar

  • 71

    , Y. Segawa, M. Yamashita, K. Nozaki. J. Am. Chem. Soc.131, 9201 (2009).CrossrefGoogle Scholar

  • 72

    , H. Ogawa, M. Yamashita. Dalton Trans.45, 625 (2013).CrossrefGoogle Scholar

  • 73

    , C. A. Tolman. Chem. Rev.77, 313 (1977).CrossrefGoogle Scholar

  • 74

    , A. M. Spokoyny, C. W. Machan, D. C. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy, A. A. Sarjeant, C. L. Stern, C. A. Mirkin. Nat. Chem.3, 590 (2011).CrossrefGoogle Scholar

  • 75

    , J. Plešek, S. Heřmánek, B. Štíbr. J. Less Common Met.67, 225 (1979).CrossrefGoogle Scholar

  • 76

    , F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Viñas. J. Am. Chem. Soc.127, 10158 (2005).CrossrefGoogle Scholar

  • 77a

    , A. M. Spokoyny, C. D. Lewis, G. Teverovskiy, S. L. Buchwald. Organometallics31, 8478 (2012).CrossrefGoogle Scholar

  • 77b

    V. Ts. Kampel, V. I. Bregadze, L. V. Ermanson, V. A. Antonovich, E. I. Matrosov, N. N. Godovikov, M. I. Kabachnik. Metalloorg. Khim.5, 1024 (1992).Google Scholar

  • 77c

    A. I. Yanovskii, Yu. T. Struchkov, V. Ts. Kampel, V. I. Bregadze, N. N. Godovikov, M. I. Kabachnik. Izv. Akad. Nauk SSSR, Ser. Khim.10, 2299 (1986).Google Scholar

  • 77d

    V. I. Bregadze, V. Ts. Kampel, E. I. Matrosov, V. A. Antonovich, A. I. Yanovskii, Yu. T. Struchkov, N. N. Godovikov, M. I. Kabachnik. Dokl. Akad. Nauk SSSR285, 1127 (1985).Google Scholar

  • 78

    , A. V. Safronov, Y. V. Sevryugina, S. S. Jalisatgi, R. D. Kennedy, C. L. Barnes, M. F. Hawthorne. Inorg. Chem.51, 2629 (2012).CrossrefGoogle Scholar

  • 79

    , O. Bondarev, Y. V. Sevryugina, S. S. Jalisatgi, M. F. Hawthorne. Inorg. Chem.51, 9935 (2012).CrossrefGoogle Scholar

  • 80

    , X. Zhang, X. Tang, J. Yang, Y. Li, H. Yan, V. I. Bregadze. Organometallics32, 2014 (2013).CrossrefGoogle Scholar

  • 81

    , K. Z. Kabytaev, T. A. Everett, A. V. Safronov, Y. V. Sevryugina, S. S. Jalisatgi, M. F. Hawthorne. Eur. J. Inorg. Chem. (2013). Online:CrossrefGoogle Scholar

  • 82

    , D. Olid, R. Núñez, C. Viñas, F. Teixidor. Chem. Soc. Rev.42, 3318 (2013).CrossrefGoogle Scholar

  • 83

    , V. Lavallo, J. H. Wright, F. S. Tham, S. Quinlivan. Angew. Chem., Int. Ed.52, 3172 (2013).CrossrefGoogle Scholar

About the article

Published Online: 2013-04-29

Published in Print: 2013-04-30


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 5, Pages 903–919, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-13-01-13.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tao-Tao Xu, Ke Cao, Cai-Yan Zhang, Ji Wu, Linhai Jiang, and Junxiao Yang
Chemical Communications, 2018
[3]
Mahdi Chaari, Zsolt Kelemen, José Giner Planas, Francesc Teixidor, Duane Choquesillo-Lazarte, Abdelhamid Ben Salah, Clara Viñas, and Rosario Núñez
Journal of Materials Chemistry C, 2018
[4]
Jack F. Kleinsasser, Sarah E. Lee, Christopher A. Lugo, Varun Tej, Scott G. McArthur, and Vincent Lavallo
Polyhedron, 2018
[5]
Chiara Bellomo, Mahdi Chaari, Justo Cabrera-González, Marco Blangetti, Chiara Lombardi, Annamaria Deagostino, Clara Viñas, Nerea Gaztelumendi, Carme Nogués, Rosario Nuñez, and Cristina Prandi
Chemistry - A European Journal, 2018
[6]
Alex I. Wixtrom, Zeeshan A. Parvez, Miles D. Savage, Elaine A. Qian, Dahee Jung, Saeed I. Khan, Arnold L. Rheingold, and Alexander M. Spokoyny
Chemical Communications, 2018
[7]
Mahdi Chaari, Justo Cabrera-González, Zsolt Kelemen, Clara Viñas, Albert Ferrer-Ugalde, Duane Choquesillo-Lazarte, Abdelhamid Ben Salah, Francesc Teixidor, and Rosario Núñez
Journal of Organometallic Chemistry, 2018, Volume 865, Page 206
[9]
Dahee Jung, Liban A. M. Saleh, Zachariah J. Berkson, Maher F. El-Kady, Jee Youn Hwang, Nahla Mohamed, Alex I. Wixtrom, Ekaterina Titarenko, Yanwu Shao, Kassandra McCarthy, Jian Guo, Ignacio B. Martini, Stephan Kraemer, Evan C. Wegener, Philippe Saint-Cricq, Bastian Ruehle, Ryan R. Langeslay, Massimiliano Delferro, Jonathan L. Brosmer, Christopher H. Hendon, Marcus Gallagher-Jones, Jose Rodriguez, Karena W. Chapman, Jeffrey T. Miller, Xiangfeng Duan, Richard B. Kaner, Jeffrey I. Zink, Bradley F. Chmelka, and Alexander M. Spokoyny
Nature Materials, 2018
[10]
Jonathan C. Axtell, Liban M. A. Saleh, Elaine A. Qian, Alex I. Wixtrom, and Alexander M. Spokoyny
Inorganic Chemistry, 2018
[12]
Bennett J. Eleazer, Mark D. Smith, Alexey A. Popov, and Dmitry V. Peryshkov
Chemical Science, 2018
[13]
Sebastian Bauer, Ilham Maulana, Peter Coburger, Steffen Tschirschwitz, Peter Lönnecke, Menyhárt B. Sárosi, René Frank, and Evamarie Hey-Hawkins
ChemistrySelect, 2017, Volume 2, Number 24, Page 7407
[14]
Jack F. Kleinsasser, Steven P. Fisher, Fook S. Tham, and Vincent Lavallo
European Journal of Inorganic Chemistry, 2017
[15]
Michael Hailmann, Natalia Wolf, Rebecca Renner, Benjamin Hupp, Andreas Steffen, and Maik Finze
Chemistry - A European Journal, 2017, Volume 23, Number 48, Page 11684
[16]
Pablo Crujeiras, José Luis Rodríguez-Rey, and Antonio Sousa-Pedrares
European Journal of Inorganic Chemistry, 2017
[17]
Jess Estrada and Vincent Lavallo
Angewandte Chemie, 2017, Volume 129, Number 33, Page 10038
[18]
Jess Estrada and Vincent Lavallo
Angewandte Chemie International Edition, 2017, Volume 56, Number 33, Page 9906
[19]
Natasha C. D. Patel, Josep M. Oliva-Enrich, and Mark A. Fox
European Journal of Inorganic Chemistry, 2017
[20]
Dong Kyun You, Ji Hye Lee, Hyonseok Hwang, Hyoshik Kwon, Myung Hwan Park, and Kang Mun Lee
Tetrahedron Letters, 2017, Volume 58, Number 33, Page 3246
[21]
Bennett J. Eleazer, Mark D. Smith, Alexey A. Popov, and Dmitry V. Peryshkov
Chem. Sci., 2017, Volume 8, Number 8, Page 5399
[22]
Dong Kyun You, Ji Hye Lee, Byung Hoon Choi, Hyonseok Hwang, Min Hyung Lee, Kang Mun Lee, and Myung Hwan Park
European Journal of Inorganic Chemistry, 2017, Volume 2017, Number 18, Page 2496
[23]
Tao-Tao Xu, Cai-Yan Zhang, Ke Cao, Ji Wu, Linhai Jiang, Jing Li, Bo Li, and Junxiao Yang
ChemistrySelect, 2017, Volume 2, Number 11, Page 3396
[24]
Ilke Ugur, Sesil Agopcan Cinar, Burcu Dedeoglu, Viktorya Aviyente, M. Frederick Hawthorne, Peng Liu, Fang Liu, K. N. Houk, and Gonzalo Jiménez-Osés
The Journal of Organic Chemistry, 2017, Volume 82, Number 10, Page 5096
[25]
Nara Shin, Seokhyeon Yu, Ji Hye Lee, Hyonseok Hwang, and Kang Mun Lee
Organometallics, 2017, Volume 36, Number 8, Page 1522
[26]
Christoph Selg, Wilma Neumann, Peter Lönnecke, Evamarie Hey-Hawkins, and Kirsten Zeitler
Chemistry - A European Journal, 2017, Volume 23, Number 33, Page 7932
[27]
Scott G. McArthur, Rahul Jay, Linxiao Geng, Juchen Guo, and Vincent Lavallo
Chem. Commun., 2017, Volume 53, Number 32, Page 4453
[28]
Nguyen Van Nghia, Sunghee Park, Youngjoon An, Junseong Lee, Jaehoon Jung, Seunghyup Yoo, and Min Hyung Lee
J. Mater. Chem. C, 2017, Volume 5, Number 12, Page 3024
[29]
Min Ying Tsang, Sabina Rodríguez-Hermida, Kyriakos C. Stylianou, Fangchang Tan, Divya Negi, Francesc Teixidor, Clara Viñas, Duane Choquesillo-Lazarte, Cristóbal Verdugo-Escamilla, Miguel Guerrero, Jordi Sort, Jordi Juanhuix, Daniel Maspoch, and José Giner Planas
Crystal Growth & Design, 2017, Volume 17, Number 2, Page 846
[30]
Elaine A. Qian, Alex I. Wixtrom, Jonathan C. Axtell, Azin Saebi, Dahee Jung, Pavel Rehak, Yanxiao Han, Elamar Hakim Moully, Daniel Mosallaei, Sylvia Chow, Marco S. Messina, Jing Yang Wang, A. Timothy Royappa, Arnold L. Rheingold, Heather D. Maynard, Petr Král, and Alexander M. Spokoyny
Nature Chemistry, 2016, Volume 9, Number 4, Page 333
[31]
Peter Coburger, Jan Schulz, Jennifer Klose, Benedikt Schwarze, Menyhárt B. Sárosi, and Evamarie Hey-Hawkins
Inorganic Chemistry, 2017, Volume 56, Number 1, Page 292
[32]
Bennett J. Eleazer, Mark D. Smith, and Dmitry V. Peryshkov
Journal of Organometallic Chemistry, 2017, Volume 829, Page 42
[33]
Tzung-Han Lin, You-Ru Cai, Weilun Chang, Ching-Han Hu, Ting-Yu Lee, Amitabha Datta, Hung-Chang Hsiao, Chia-Her Lin, and Jui-Hsien Huang
Journal of Organometallic Chemistry, 2016, Volume 825-826, Page 15
[34]
Dmitrii S. Bolotin, Valeria K. Burianova, Alexander S. Novikov, Marina Ya. Demakova, Carla Pretorius, Pennie Petrus Mokolokolo, Andreas Roodt, Nadezhda A. Bokach, Vitaliy V. Suslonov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin, Nikolay T. Kuznetsov, and Vadim Yu. Kukushkin
Organometallics, 2016, Volume 35, Number 20, Page 3612
[35]
Yuen Onn Wong, Mark D. Smith, and Dmitry V. Peryshkov
Chem. Commun., 2016, Volume 52, Number 86, Page 12710
[36]
Allen L. Chan, Jess Estrada, Christos E. Kefalidis, and Vincent Lavallo
Organometallics, 2016, Volume 35, Number 19, Page 3257
[37]
Ke Cao, Tao-Tao Xu, Ji Wu, Linhai Jiang, and Junxiao Yang
Chem. Commun., 2016, Volume 52, Number 76, Page 11446
[38]
Bennett J. Eleazer, Mark D. Smith, Alexey A. Popov, and Dmitry V. Peryshkov
Journal of the American Chemical Society, 2016, Volume 138, Number 33, Page 10531
[39]
Michael Hailmann, Natalia Wolf, Rebecca Renner, Thomas C. Schäfer, Benjamin Hupp, Andreas Steffen, and Maik Finze
Angewandte Chemie, 2016, Volume 128, Number 35, Page 10663
[40]
Michael Hailmann, Natalia Wolf, Rebecca Renner, Thomas C. Schäfer, Benjamin Hupp, Andreas Steffen, and Maik Finze
Angewandte Chemie International Edition, 2016, Volume 55, Number 35, Page 10507
[41]
Rafal M. Dziedzic, Liban M. A. Saleh, Jonathan C. Axtell, Joshua L. Martin, Simone L. Stevens, A. Timothy Royappa, Arnold L. Rheingold, and Alexander M. Spokoyny
Journal of the American Chemical Society, 2016, Volume 138, Number 29, Page 9081
[42]
Steven P. Fisher, Ahmad El-Hellani, Fook S. Tham, and Vincent Lavallo
Dalton Trans., 2016, Volume 45, Number 24, Page 9762
[43]
Omar M. Hamdy, Huong T. Pham, Scott G. McArthur, Vincent Lavallo, and Ryan R. Julian
Rapid Communications in Mass Spectrometry, 2016, Volume 30, Number 10, Page 1223
[44]
Marco S. Messina, Jonathan C. Axtell, Yiqun Wang, Paul Chong, Alex I. Wixtrom, Kent O. Kirlikovali, Brianna M. Upton, Bryan M. Hunter, Oliver S. Shafaat, Saeed I. Khan, Jay R. Winkler, Harry B. Gray, Anastassia N. Alexandrova, Heather D. Maynard, and Alexander M. Spokoyny
Journal of the American Chemical Society, 2016, Volume 138, Number 22, Page 6952
[45]
Liban M. A. Saleh, Rafal M. Dziedzic, Saeed I. Khan, and Alexander M. Spokoyny
Chemistry - A European Journal, 2016, Volume 22, Number 25, Page 8466
[46]
José Planas, Francesc Teixidor, and Clara Viñas
Crystals, 2016, Volume 6, Number 5, Page 50
[47]
Yuen Onn Wong, Mark D. Smith, and Dmitry V. Peryshkov
Chemistry - A European Journal, 2016, Volume 22, Number 20, Page 6764
[48]
Kent O. Kirlikovali, Jonathan C. Axtell, Alejandra Gonzalez, Alice C. Phung, Saeed I. Khan, and Alexander M. Spokoyny
Chem. Sci., 2016, Volume 7, Number 8, Page 5132
[49]
Jihyun Park, Young Hoon Lee, Ji Yeon Ryu, Junseong Lee, and Min Hyung Lee
Dalton Trans., 2016, Volume 45, Number 13, Page 5667
[50]
Alex I. Wixtrom, Yanwu Shao, Dahee Jung, Charles W. Machan, Shaunt N. Kevork, Elaine A. Qian, Jonathan C. Axtell, Saeed I. Khan, Clifford P. Kubiak, and Alexander M. Spokoyny
Inorg. Chem. Front., 2016, Volume 3, Number 5, Page 711
[51]
Jess Estrada, Christopher A. Lugo, Scott G. McArthur, and Vincent Lavallo
Chem. Commun., 2016, Volume 52, Number 9, Page 1824
[53]
Bennett J. Eleazer, Mark D. Smith, and Dmitry V. Peryshkov
Organometallics, 2016, Volume 35, Number 2, Page 106
[54]
Yejin Kim, Sunghee Park, Young Hoon Lee, Jaehoon Jung, Seunghyup Yoo, and Min Hyung Lee
Inorganic Chemistry, 2016, Volume 55, Number 2, Page 909
[55]
Scott. G. McArthur, Linxiao Geng, Juchen Guo, and Vincent Lavallo
Inorg. Chem. Front., 2015, Volume 2, Number 12, Page 1101
[56]
Young Hoon Lee, Jihyun Park, Junseong Lee, Sang Uck Lee, and Min Hyung Lee
Journal of the American Chemical Society, 2015, Volume 137, Number 25, Page 8018
[57]
Jess Estrada, Sarah E. Lee, Scott G. McArthur, Ahmad El-Hellani, Fook S. Tham, and Vincent Lavallo
Journal of Organometallic Chemistry, 2015, Volume 798, Page 214
[58]
Jess Estrada, David H. Woen, Fook S. Tham, Garret M. Miyake, and Vincent Lavallo
Inorganic Chemistry, 2015, Volume 54, Number 11, Page 5142
[59]
Matthew J. Asay, Steven P. Fisher, Sarah E. Lee, Fook S. Tham, Dan Borchardt, and Vincent Lavallo
Chem. Commun., 2015, Volume 51, Number 25, Page 5359
[60]
Christopher A. Lugo, Curtis E. Moore, Arnold L. Rheingold, and Vincent Lavallo
Inorganic Chemistry, 2015, Volume 54, Number 5, Page 2094
[61]
Alexander Himmelspach, Jonas Warneke, Marius Schäfer, Michael Hailmann, and Maik Finze
Organometallics, 2015, Volume 34, Number 2, Page 462
[62]
Michael Hailmann, Szymon Z. Konieczka, Alexander Himmelspach, Jochen Löblein, Guido J. Reiss, and Maik Finze
Inorganic Chemistry, 2014, Volume 53, Number 17, Page 9385
[63]
Min Ying Tsang, Clara Viñas, Francesc Teixidor, José Giner Planas, Nerea Conde, Raul SanMartin, María Teresa Herrero, Esther Domínguez, Agustí Lledós, Pietro Vidossich, and Duane Choquesillo-Lazarte
Inorganic Chemistry, 2014, Volume 53, Number 17, Page 9284
[64]
Javier Fajardo, Allen L. Chan, Fook S. Tham, and Vincent Lavallo
Inorganica Chimica Acta, 2014, Volume 422, Page 206
[65]
Ahmad El-Hellani and Vincent Lavallo
Angewandte Chemie, 2014, Volume 126, Number 17, Page 4578
[66]
Ahmad El-Hellani and Vincent Lavallo
Angewandte Chemie International Edition, 2014, Volume 53, Number 17, Page 4489
[67]
Ahmad El-Hellani, Christos E. Kefalidis, Fook S. Tham, Laurent Maron, and Vincent Lavallo
Organometallics, 2013, Volume 32, Number 23, Page 6887
[68]
Masato Tominaga, Yasuhiro Morisaki, and Yoshiki Chujo
Macromolecular Rapid Communications, 2013, Volume 34, Number 17, Page 1357

Comments (0)

Please log in or register to comment.
Log in