Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 7 (Jan 2013)

Issues

Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst

Shan Yu
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Feng Wang
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing-Jing Wang
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hong-Yan Wang
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bin Chen
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ke Feng
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chen-Ho Tung
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Li-Zhu Wu
  • Corresponding author
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-19 | DOI: https://doi.org/10.1351/PAC-CON-12-08-05

An intermolecular light-driven hydrogen evolution system with free glutamic-acid-modified zinc tetra(p-phenyl) porphyrin (Glu-ZnP) as a photosensitizer and [Fe2(CO)6(μ-adt)C6H5] [μ-adt = N(CH2S)2] (Badt) as a catalyst has been constructed. Using phenylmercaptan (BSH) as electron donor and acetic acid (HOAc) as proton source, hydrogen was obtained after irradiation with visible light for 2 h; the efficiency is comparable to that of the similar intramolecular dyad. Steady-state and time-resolved spectroscopy and cyclic voltammetry show that both the first and the second electron transfer from singlet 1*Glu-ZnP to Badt and reduced Badt are thermodynamically feasible. However, the competition of electron transfer from singlet 1*Glu-ZnP to Badt with intersystem crossing from singlet 1*Glu-ZnP to triplet 3*Glu-ZnP, inefficient electron transfer from triplet 3*Glu-ZnP to Badt, and the lower energy of triplet 3*Glu-ZnP and possible 3*Badt to that of yielded charge-separated state of Glu-ZnP+·-Badt−· were believed to be the obstacles for efficient hydrogen evolution.

Keywords: [2Fe2S] model; back electron transfer; energy transfer; [FeFe]-hydrogenase; intersystem crossing; light-driven hydrogen evolution; photoinduced electron transfer; zinc porphyrin

Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIVth, Coimbra, Portugal, 2012-07-15–2012-07-20

References

  • 1

    , M. Frey. ChemBioChem 3, 153 (2002).CrossrefGoogle Scholar

  • 2

    , M. L. Ghirardi, A. Dubini, J. Yu, P.-C. Maness. Chem. Soc. Rev. 38, 52 (2009).CrossrefGoogle Scholar

  • 3

    , M. W. W. Adams, E. I. Stiefel. Science 282, 1842 (1998).CrossrefGoogle Scholar

  • 4

    , Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, J. C. Fontecilla-Camps. Structure 7, 13 (1999).CrossrefGoogle Scholar

  • 5

    , C. Tard, C. J. Pickett. Chem. Rev. 109, 2245 (2009).CrossrefGoogle Scholar

  • 6

    , F. Gloaguen, T. B. Rauchfuss. Chem. Soc. Rev. 38, 100 (2009).CrossrefGoogle Scholar

  • 7

    , A. Magnuson, M. Anderlund, O. Johansson, P. Lindblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styring, V. Sundström, L. Hammarström. Acc. Chem. Res. 42, 1899 (2009).CrossrefGoogle Scholar

  • 8

    , M. Wang, L. Sun. ChemSusChem 3, 551 (2010).CrossrefGoogle Scholar

  • 9

    , F. Wang, W.-G. Wang, H.-Y. Wang, G. Si, C.-H. Tung, L.-Z. Wu. ACS Catal. 2, 407 (2012).CrossrefGoogle Scholar

  • 10

    , F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss. J. Am. Chem. Soc. 123, 9476 (2001).CrossrefGoogle Scholar

  • 11

    , S. J. Borg, T. Behrsing, S. P. Best, M. Razavet, X. Liu, C. J. Pickett. J. Am. Chem. Soc. 126, 16988 (2004).CrossrefGoogle Scholar

  • 12

    , R. Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga, M. Y. Darensbourg. J. Am. Chem. Soc. 126, 12004 (2004).CrossrefGoogle Scholar

  • 13

    , Y. Na, M. Wang, J. Pan, P. Zhang, B. Åkermark, L. Sun. Inorg. Chem. 47, 2805 (2008).CrossrefGoogle Scholar

  • 14

    , F. Wang, W.-G. Wang, X.-J. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu. Angew. Chem., Int. Ed. 50, 3193 (2011).CrossrefGoogle Scholar

  • 15

    , F. Wen, X. Wang, L. Huang, G. Ma, J. Yang, C. Li. ChemSusChem 5, 849 (2012).CrossrefGoogle Scholar

  • 16

    , W.-G. Wang, F. Wang, H.-Y. Wang, G. Si, C.-H. Tung, L.-Z. Wu. Chem. Asian J. 5, 1796 (2010).CrossrefGoogle Scholar

  • 17

    , H.-Y. Wang, W.-G. Wang, G. Si, F. Wang, C.-H. Tung, L.-Z. Wu. Langmuir 26, 9766 (2010).CrossrefGoogle Scholar

  • 18

    , H.-Y. Wang, G. Si, W.-N. Cao, W.-G. Wang, Z.-J. Li, F. Wang, C.-H. Tung, L.-Z. Wu. Chem. Commun. 47, 8406 (2011).CrossrefGoogle Scholar

  • 19

    , W.-G. Wang, F. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu. Dalton Trans. 41, 2420 (2012).CrossrefGoogle Scholar

  • 20

    , W.-N. Cao, F. Wang, H.-Y. Wang, B. Chen, K. Feng, C.-H. Tung, L.-Z. Wu. Chem. Commun. 48, 8081 (2012).CrossrefGoogle Scholar

  • 21

    , P. Zhang, M. Wang, Y. Na, X. Li, Y. Jiang, L. Sun. Dalton Trans. 39, 1204 (2010).CrossrefGoogle Scholar

  • 22

    , X. Li, M. Wang, L. Chen, X. Wang, J. Dong, L. Sun. ChemSusChem 5, 913 (2012).CrossrefGoogle Scholar

  • 23

    , L.-C. Song, M.-Y. Tang, F.-H. Su, Q.-M. Hu. Angew. Chem., Int. Ed. 45, 1130 (2006).CrossrefGoogle Scholar

  • 24

    , L.-C. Song, M.-Y. Tang, S.-Z. Mei, J.-H. Huang, Q.-M. Hu. Organometallics 26, 1575 (2007).CrossrefGoogle Scholar

  • 25

    A. M. Kluwer, R. Kaprea, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. Van Leeuwen, J. N. H. Reek. Proc. Natl. Acad. Sci. USA 106, 10460 (2009).CrossrefGoogle Scholar

  • 26

    , A. P. S. Samuel, D. T. Co, C. L. Stern, M. R. Wasielewski. J. Am. Chem. Soc. 132, 8813 (2010).CrossrefGoogle Scholar

  • 27

    , P. Poddutoori, D. T. Co, A. P. S. Samuel, C. H. Kim, M. T. Vagnini, M. R. Wasielewski. Energy Environ. Sci. 4, 2441 (2011).CrossrefGoogle Scholar

  • 28

    , X. Li, M. Wang, S. Zhang, J. Pan, Y. Na, J. Liu, B. Åkermark, L. Sun. J. Phys. Chem. B 112, 8198 (2008).CrossrefGoogle Scholar

  • 29

    , S. A. Vinogradov, L.-W. Lo, D. F. Wilson. Chem.—Eur. J. 5, 1338 (1999).CrossrefGoogle Scholar

  • 30

    , J. D. Lawrence, H. Li, T. B. Rauchfuss. Chem. Commun. 16, 1482 (2001).CrossrefGoogle Scholar

  • 31

    , G. Si, W.-G. Wang, H.-Y. Wang, C.-H. Tung, L.-Z. Wu. Inorg. Chem. 47, 8101 (2008).CrossrefGoogle Scholar

  • 32

    , W.-G. Wang, H.-Y. Wang, G. Si, C.-H. Tung, L.-Z. Wu. Dalton Trans. 2712 (2009).CrossrefGoogle Scholar

  • 33

    , J.-F. Capon, S. Ezzaher, F. Gloaguen, F. Y. Pétillon, P. Schollhammer, J. Talarmin. Chem.—Eur. J. 14, 1954 (2008).CrossrefGoogle Scholar

  • 34

    , F. Wessendorf, J.-F. Gnichwitz, G. H. Sarova, K. Hager, U. Hartnagel, D. M. Guldi, A. Hirsch. J. Am. Chem. Soc. 129, 16057 (2007).CrossrefGoogle Scholar

  • 35

    , C. Luo, D. M. Guldi, H. Imahori, K. Tamaki, Y. Sakata. J. Am. Chem. Soc. 122, 6535 (2000).CrossrefGoogle Scholar

  • 36

    , R. F. Kelley, M. J. Tauber, M. R. Wasielewski. J. Am. Chem. Soc. 128, 4779 (2006).CrossrefGoogle Scholar

  • 37

    D. Rehm, A. Weller. Isr. J. Chem. 8, 259 (1970).Google Scholar

  • 38

    , J.-F. Côte, D. Brouillette, J. E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud, G. Perron. J. Solution Chem. 25, 1163 (1996).CrossrefGoogle Scholar

  • 39

    , H. Imahori, K. Tamaki, D. M. Guldi, C. Luo, M. Fujitsuka, O. Ito, Y. Sakata, S. Fukuzumi. J. Am. Chem. Soc. 123, 2607 (2001).CrossrefGoogle Scholar

  • 40

    , H. Imahori, M. E. El-Khouly, M. Fujitsuka, O. Ito, Y. Sakata, S. Fukuzumi. J. Phys. Chem. A 105, 325 (2001).CrossrefGoogle Scholar

About the article

Published Online: 2013-01-19

Published in Print: 2013-01-19


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-12-08-05.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Shang Gao, Shuai Huang, Qian Duan, Jianhua Hou, Dayong Jiang, Qingcheng Liang, and Jianxun Zhao
International Journal of Hydrogen Energy, 2014, Volume 39, Number 20, Page 10434

Comments (0)

Please log in or register to comment.
Log in