Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 7

Issues

Photoinduced charge separation in a PtII acetylide donor–acceptor triad based on 2-(1-pyrazole)-pyridine modified with naphthalene mono-imide electron acceptor

Igor V. Sazanovich / Mohammed A. H. Alamiry / Anthony J. H. M. Meijer / Michael Towrie
  • Corresponding author
  • Laser for Science Facility, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Stephen Davies / Robert D. Bennett / Julia A. Weinstein
Published Online: 2013-06-21 | DOI: https://doi.org/10.1351/PAC-CON-13-04-02

A class of molecular electron transfer cascades—those based on PtII complexes of 2-(1-pyrazole)-pyridine (pzpy) ligands—are reported. The synthesis of a new electron-acceptor imide-modified pzpy ligands is reported, and their application to transition-metal chemistry demonstrated by the synthesis of the PtII chloride and acetylide complexes. These donor–acceptor assemblies are promising models for investigation of photoinduced charge separation. Accordingly, picosecond time-resolved infrared (TRIR) and femtosecond transient absorption (TA) studies have been undertaken to elucidate the nature and dynamics of the lowest excited states in Pt(NAP-pyr-pyrazole)(–CC–Ph–C7H15)2. It has been established that the initial population of an MLL'CT excited state in the chromophoric [Pt(pyridine-pyrazole)(acetylide)] core is followed by an electron transfer to the naphthalimide (NAP) acceptor, forming a charge-separated state. This state is characterized by a large shift in ν(CO) vibrations of the NAP acceptor, as well as by a very intense and broad [×10 times in comparison to ν(CO)] asymmetric acetylide stretch which incorporates –CC–Pt–CC– framework and occurs at approximately 300 cm–1 lower in energy than its ground-state counterpart. In CH2Cl2 at room temperature, the charge-separated state with the lifetime of 150 ps collapses into an almost isoenergetic NAP-localized triplet state; the rate of this transformation changes upon decreasing the temperature to 263 K. This final excited state, 3NAP-(pyr-pyrazole)Pt(–CC–Ph–C7H15)2, has an unusually long, for PtII complexes, excited-state lifetime of tens of microseconds. The work demonstrates the possibility of tuning excited-state properties in this new class of PtII chromophores designed for electron-transfer cascades.

Keywords: 2-(1-pyrazole)-pyridine; charge-transfer dynamics; femtosecond transient absorption spectroscopy; imides; photoinduced electron transfer; platinum acetylides; platinum diimine; solar energy; time-resolved infrared spectroscopy; ultrafast laser spectroscopy

Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIVth, Coimbra, Portugal, 2012-07-15–2012-07-20

References

  • 1

    , R. Eisenberg. Science324, 44 (2009).CrossrefGoogle Scholar

  • 2

    , J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer. Inorg. Chem.44, 6802 (2005).CrossrefGoogle Scholar

  • 3

    , S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl, R. Eisenberg. Inorg. Chem.44, 6865 (2005).CrossrefGoogle Scholar

  • 4

    , S. Archer, J. A. Weinstein. Coord. Chem. Rev. 2530 (2012).CrossrefGoogle Scholar

  • 5

    , J. E. McGarrah, R. Eisenberg. Inorg. Chem.42, 4355 (2003).CrossrefGoogle Scholar

  • 6

    , U. Siemeling, K. Bausch, H. Fink, C. Bruhn, M. Baldus, B. Angerstein, R. Plessow, A. Brockhinke. Dalton Trans. 2365 (2005).CrossrefGoogle Scholar

  • 7

    , T. J. Wadas, S. Chakraborty, R. J. Lachicotte, Q. M. Wang, R. Eisenberg. Inorg. Chem.44, 2628 (2005).CrossrefGoogle Scholar

  • 8

    , C. Monnereau, J. Gomez, E. Blart, F. Odobel, S. Wallin, A. Fallberg, L. Hammarstrom. Inorg. Chem.44, 4806 (2005).CrossrefGoogle Scholar

  • 9

    , J. J. Concepcion, R. L. House, J. M. Papanikolas. Proc. Natl. Acad. Sci. USA109, 15560 (2012).CrossrefGoogle Scholar

  • 10

    , P. Du, J. Schneider, F. Li, W. Zhao, U. Patel, F. N. Castellano, R. Eisenberg. J. Am. Chem. Soc.130, 5056 (2008).CrossrefGoogle Scholar

  • 11

    , F. Hua, S. Kinayyigit, J. R. Cable, F. N. Castellano. Inorg. Chem.45, 4304 (2006).CrossrefGoogle Scholar

  • 12

    , V. W.-W. Yam, K. Kam-Wing Lo, K. Man-Chung Wong. J. Organomet. Chem.578, 3 (1999).CrossrefGoogle Scholar

  • 13

    , R. Sugimura, S. Suzuki, M. Kozaki, K. Keyaki, K. Nozaki, H. Matsushita, N. Ikeda, K. Okada. Res. Chem. Intermed.39, 185 (2013).CrossrefGoogle Scholar

  • 14

    M. L. Muro, A. A. Rachford, X. H. Wang, F. N. Castellano. In Photophysics of Organometallics, A. J. Lees (Ed.), Topics in Organometallic Chemistry29, 159 (2010).Google Scholar

  • 15

    , Y. Nagao, T. Misono. Bull. Chem. Soc. Japan54, 1191 (1981).CrossrefGoogle Scholar

  • 16

    , Y. Zhao, M. R. Wasielewski. Tetrahedron Lett.40, 7047 (1999).CrossrefGoogle Scholar

  • 17

    , H. Langhals, R. Ismael, O. Yuruk. Tetrahedron56, 5435 (2000).CrossrefGoogle Scholar

  • 18

    , K.-Y. Tomizaki, P. Thamyongkit, R. S. Loewe, J. S. Lindsey. Tetrahedron59, 1191 (2003).CrossrefGoogle Scholar

  • 19

    , F. Würthner. Chem. Commun. 1564 (2004).CrossrefGoogle Scholar

  • 20

    , J. Wu, J. Qu, N. Tchebotareva, K. Müllen. Tetrahedron Lett.46, 1565 (2006).CrossrefGoogle Scholar

  • 21

    , D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas, M. R. Wasielewski. J. Phys. Chem. A104, 6545 (2000).CrossrefGoogle Scholar

  • 22

    , G. Andric, J. F. Boas, A. M. Bond, G. D. Fallon, K. P. Ghiggino, C. F. Hogan, J. A. Hutchison, M. A.-P. Lee, S. J. Langford, J. R. Pilbrow, G. J. Troup, C. P. Woodward. Aust. J. Chem.57, 1011 (2004).CrossrefGoogle Scholar

  • 23

    , D. W. Dixon, N. B. Thornton, V. Steullet, T. Netzel. Inorg. Chem.38, 5526 (1999).CrossrefGoogle Scholar

  • 24

    , M. D. Hossain, M.-A. Haga, B. Gholamkhass, K. Nozaki, M. Tsushima, N. Ikeda, T. Ohno. Collect. Czech. Chem. Commun.66, 307 (2001).CrossrefGoogle Scholar

  • 25

    , F. N. Castellano. Dalton Trans.41, 8493 (2012).CrossrefGoogle Scholar

  • 26

    , O. Johansson, H. Wolpher, M. Borgström, L. Hammarström, J. Bergquist, L. Sun, B. Akermark. Chem. Commun. 194 (2004).CrossrefGoogle Scholar

  • 27

    , A. Prodi, C. Chiorboli, F. Scandola, E. Iengo, E. Alessio, R. Dobrawa, F. Würthner. J. Am. Chem. Soc.127, 1454 (2005).CrossrefGoogle Scholar

  • 28

    , L. Flamigni, E. Baranoff, J.-P. Collin, J.-P. Sauvage. Chem.—Eur. J.12, 6592 (2006).CrossrefGoogle Scholar

  • 29

    , F. Würthner, A. Sautter. Org. Biomol. Chem.1, 240 (2003).CrossrefGoogle Scholar

  • 30

    , C. Addicott, I. Oesterling, T. Yamamoto, K. Müllen, P. J. Stang. J. Org. Chem.70, 797 (2005).CrossrefGoogle Scholar

  • 31

    , A. Sautter, B. K. Kaletas, D. G. Schmid, R. Dobrawa, M. Zimine, G. Jung, I. H. M. van Stokkum, L. De Cola, R. M. Williams, F. Würthner. J. Am. Chem. Soc.127, 6719 (2005).CrossrefGoogle Scholar

  • 32

    , E. M. McGale, R. E. Murray, C. J. McAdam, J. L. Morgan, B. H. Robinson, J. Simpson. Inorg. Chim. Acta352, 129 (2003).CrossrefGoogle Scholar

  • 33

    , C. J. McAdam, A. R. Manning, B. H. Robinson, J. Simpson. Inorg. Chim. Acta358, 1673 (2005).CrossrefGoogle Scholar

  • 34

    , I. V. Sazanovich, M. A. H. Alamiry, J. Best, R. D. Bennett, O. V. Bouganov, E. S. Davies, V. P. Grivin, A. J. H. M. Meijer, V. F. Plyusnin, K. L. Ronayne, S. A. Tikhomirov, M. Towrie, J. A. Weinstein. Inorg. Chem.47, 10432 (2008).CrossrefGoogle Scholar

  • 35

    , S. F. Parker, K. Refson, R. D. Bennett, J. Best, M. Ya. Mel’nikov, J. A. Weinstein. Inorg. Chem.51, 9748 (2012).CrossrefGoogle Scholar

  • 36

    , N. Saha, D. Bhattacharyya, S. K. Kar. Inorg. Chim. Acta67, L37 (1982).CrossrefGoogle Scholar

  • 37

    , R. J. Less, J. L. M. Wicks, N. P. Chatterton, M. J. Dewey, N. L. Cromhout, M. A. Halcrow, J. E. Davies. J. Chem. Soc., Dalton Trans. 4055 (1996).CrossrefGoogle Scholar

  • 38

    , A. Gelling, K. G. Orrell, A. G. Osborne, V. Sik, M. B. Hursthouse, S. J. Coles. Polyhedron15, 3203 (1996).CrossrefGoogle Scholar

  • 39

    , S. A. Willison, H. Jude, R. M. Antonelli, J. M. Rennekamp, N. A. Eckert, J. A. K. Bauer, W. B. Connick. Inorg. Chem.43, 2548 (2004).CrossrefGoogle Scholar

  • 40

    N. Adhikari, N. Saha. Asian J. Chem.20, 521 (2008).Google Scholar

  • 41

    , E. Budzisz, M. Miernicka, I.-P. Lorenz, P. Mayer, U. Krajewska, M. Rozalski. Polyhedron28, 637 (2009).CrossrefGoogle Scholar

  • 42

    , M. A. Khan, A. A. A. Pinto. Monatsh. Chem.111, 883 (1980).CrossrefGoogle Scholar

  • 43

    , X.-J. Wang, J. Tan, K. Grozinger, R. Betageri, T. Kirrane, J. R. Proudfoot. Tetrahedron Lett.41, 5321 (2000).CrossrefGoogle Scholar

  • 44

    , J. H. Price, A. N. Williamson, R. F. Schramm, B. B. Wayland. Inorg. Chem.11, 1280 (1972).CrossrefGoogle Scholar

  • 45

    , K. Sonogashira, Y. Fujikura, T. Yatake, N. Toyoshima, S. Takahashi, N. Hagihara. J. Organomet. Chem.145, 101 (1978).CrossrefGoogle Scholar

  • 46

    , C. J. Adams, S. L. James, X. Liu, P. R. Raithby, L. J. Yellowlees. J. Chem. Soc., Dalton Trans. 63 (2000).CrossrefGoogle Scholar

  • 47

    , S. C. Chan, M. C. W. Chan, Y. Wang, C. M. Che, K. K. Cheung, N. Zhu. Chem.—Eur. J.7, 4180 (2001).CrossrefGoogle Scholar

  • 48

    , F. N. Castellano, I. E. Pomestchenko, E. Shikhova, F. Hua, M. L. Muro, N. Rajapakse. Coord. Chem. Rev.250, 1819 (2006).CrossrefGoogle Scholar

  • 49

    , M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R. J. Lachicotte, R. Eisenberg. Inorg. Chem.39, 447 (2000).CrossrefGoogle Scholar

  • 50

    , N. M. Shavaleev, Z. R. Bell, T. L. Easun, R. Rutkaite, L. Swanson, M. D. Ward. Dalton Trans. 3678 (2004).CrossrefGoogle Scholar

  • 51

    , T. K. Aldridge, E. M. Stacy, D. R. McMillin. Inorg. Chem.33, 722 (1994).CrossrefGoogle Scholar

  • 52

    , C. E. Whittle, J. A. Weinstein, M. W. George, K. S. Schanze. Inorg. Chem.40, 4053 (2001).CrossrefGoogle Scholar

  • 53

    , C. J. Adams, N. Fey, Z. A. Harrison, I. V. Sazanovich, M. Towrie, J. A. Weinstein. Inorg. Chem.47, 8242 (2008).CrossrefGoogle Scholar

  • 54

    , E. A. Glik, S. Kinayyigit, K. L. Ronayne, M. Towrie, I. V. Sazanovich, J. A. Weinstein, F. N. Castellano. Inorg. Chem.47, 6974 (2008).CrossrefGoogle Scholar

  • 55

    , J. M. Butler, M. W. George, J. R. Schoonover, D. M. Dattelbaum, T. J. Meyer. Coord. Chem. Rev.251, 492 (2007).CrossrefGoogle Scholar

  • 56

    , J. A. Weinstein, D. C. Grills, M. Towrie, P. Matousek, A. W. Parker, M. W. George. Chem. Comm. 382 (2002).CrossrefGoogle Scholar

  • 57

    , T. Elsaesser, W. Kaiser. Annu. Rev. Phys. Chem.42, 83 (1991).CrossrefGoogle Scholar

  • 58

    , A. T. Yeh, C. V. Shank, J. K. McCusker. Science289, 935 (2000).CrossrefGoogle Scholar

  • 59

    , A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, M. Chergui. Angew. Chem., Int. Ed.45, 3174 (2006).CrossrefGoogle Scholar

  • 60

    , E. O. Danilov, I. E. Pomestchenko, S. Kinayyigit, P. L. Gentili, M. Hissler, R. Ziessel, F. N. Castellano. J. Phys. Chem. A109, 2465 (2005).CrossrefGoogle Scholar

  • 61

    , G. Ramakrishna, T. Goodson III, J. E. Rogers-Haley, T. M. Cooper, D. G. McLean, A. Urbas. J. Phys. Chem. C113, 1060 (2009).CrossrefGoogle Scholar

  • 62

    , A. A. Rachford, S. Goeb, R. Ziessel, F. N. Castellano. Inorg. Chem.47, 4348 (2008).CrossrefGoogle Scholar

  • 63

    , V. Wintgens, P. Valat, J. Kossanyi, L. Biczok, A. Demeter, T. Bérces. J. Chem. Soc., Faraday Trans.90, 411 (1994).CrossrefGoogle Scholar

  • 64

    , B. M. Aveline, S. Matsugo, R. W. Redmond. J. Am. Chem. Soc.119, 11785 (1997).CrossrefGoogle Scholar

  • 65

    , J. E. Rogers, L. A. Kelly. J. Am. Chem. Soc.121, 3854 (1999).CrossrefGoogle Scholar

  • 66

    , M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. S. Ma, D. Phillips, A. W. Parker, M. W. George. Appl. Spectrosc.57, 367 (2003).CrossrefGoogle Scholar

  • 67

    , G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z.-J. Xin, M. Towrie. Appl. Spectrosc.64, 1311 (2010).CrossrefGoogle Scholar

  • 68

    K. L. Ronayne, M. Towrie. In Central Laser Facility Annual Report 2006–2007, B. Wyborn (Ed.), pp. 192–193, Ampersand Design, Ardington, UK (2007).Google Scholar

  • 69

    M. Towrie, A. W. Parker, K. L. Ronayne, S. Manolopoulos, S. Martin, P. Seller. In Central Laser Facility Annual Report 2004–2005, B. Wyborn (Ed.), pp. 235–236, RAL Reprographics Section, Didcot, UK (2005).Google Scholar

  • 70

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.2, Gaussian, Inc., Wallingford CT (2009).Google Scholar

  • 71

    , R. C. Whaley, A. Petitet. Software: Practice Experience35, 10 (2005).CrossrefGoogle Scholar

  • 72

    , R. C. Whaley, A. Petitet, J. J. Dongarra. Parallel Computing27, 3 (2001).CrossrefGoogle Scholar

  • 73

    , A. D. Becke. J. Chem. Phys.98, 5648 (1993).CrossrefGoogle Scholar

  • 74

    , A. D. McLean, G. S. Chandler. J. Chem. Phys.72, 5639 (1980).CrossrefGoogle Scholar

  • 75

    , R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys.72, 650 (1980).CrossrefGoogle Scholar

  • 76

    , X. Y. Cao, M. Dolg. J. Chem. Phys.115, 7348 (2001).CrossrefGoogle Scholar

  • 77

    , A. Nicklass, M. Dolg, H. Stoll, H. Preuss. J. Chem. Phys.102, 8942 (1995).CrossrefGoogle Scholar

  • 78

    , S. P. Foxon, C. Green, M. Walker, A. Wragg, H. Adams, J. A. Weinstein, S. C. Parker, A. J. H. M. Meijer, J. A. Thomas. Inorg. Chem.51, 463 (2012).CrossrefGoogle Scholar

  • 79

    J. A. Thomas, H. Ahmad, A. J. H. M. Meijer. Chem. Asian J.6, 2339 (2011).Google Scholar

  • 80

    , A. B. Wragg, S. Derossi, T. L. Easun, M. W. George, X.-Z. Sun, F. Hartl, A. H. Shelton, A. J. H. M. Meijer, M. D. Ward. Dalton Trans.41, 10354 (2012).CrossrefGoogle Scholar

  • 81

    , B. Mennucci, J. Tomassi. J. Chem. Phys.106, 5151 (1997).CrossrefGoogle Scholar

  • 82

    , M. Cossi, V. Barone, B. Menucci, J. Tomassi. Chem. Phys. Lett.286, 253 (1998).CrossrefGoogle Scholar

  • 83

    , N. M. O’Boyle, A. L. Tenderholt, K. M. Langner. J. Comput. Chem.29, 839 (2008).CrossrefGoogle Scholar

  • 84

    , K. K. Irikura, R. D. Johnson, R. N. Kacker. J. Phys. Chem. A109, 8430 (2005).CrossrefGoogle Scholar

  • 85

    Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ [last accessed: 21 May 2013].Google Scholar

  • 86

    Povray: Persistence of Vision Pty. Ltd. (2004). Persistence of Vision Raytracer (Version 3.6) [Computer software]. Retrieved from http://www.povray.org/download/ [last accessed 21 May 2013].Google Scholar

About the article

Published Online: 2013-06-21

Published in Print: 2013-06-21


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 7, Pages 1331–1348, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-13-04-02.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Stuart A. Archer, Theo Keane, Milan Delor, Elizabeth Bevon, Alexander J. Auty, Dimitri Chekulaev, Igor V. Sazanovich, Michael Towrie, Anthony J. H. M. Meijer, and Julia A. Weinstein
Chemistry - A European Journal, 2017
[2]
Paul A. Scattergood, Milan Delor, Igor V. Sazanovich, Michael Towrie, and Julia A. Weinstein
Faraday Discuss., 2015, Volume 185, Page 69
[3]
Fangfang Zhong, Ahmet Karatay, Liang Zhao, Jianzhang Zhao, Cheng He, Caishun Zhang, Halime Gul Yaglioglu, Ayhan Elmali, Betül Küçüköz, and Mustafa Hayvali
Inorganic Chemistry, 2015, Volume 54, Number 16, Page 7803
[4]
Igor V. Sazanovich, Jonathan Best, Paul A. Scattergood, Michael Towrie, Sergei A. Tikhomirov, Oleg V. Bouganov, Anthony J. H. M. Meijer, and Julia A. Weinstein
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 47, Page 25775
[5]
Paul A. Scattergood, Milan Delor, Igor V. Sazanovich, Oleg V. Bouganov, Sergei A. Tikhomirov, Alexander S. Stasheuski, Anthony W. Parker, Gregory M. Greetham, Michael Towrie, E. Stephen Davies, Anthony J. H. M. Meijer, and Julia A. Weinstein
Dalton Trans., 2014, Volume 43, Number 47, Page 17677
[6]
Takaaki Miyazaki, Masahiko Shibahara, Jun-ichi Fujishige, Motonori Watanabe, Kenta Goto, and Teruo Shinmyozu
The Journal of Organic Chemistry, 2014, Volume 79, Number 23, Page 11440
[7]
Antonino Arrigo, Antonio Santoro, Fausto Puntoriero, Philippe P. Lainé, and Sebastiano Campagna
Coordination Chemistry Reviews, 2015, Volume 304-305, Page 109
[8]
Daniel Sykes, Ahmet J. Cankut, Noorshida Mohd Ali, Andrew Stephenson, Steven J. P. Spall, Simon C. Parker, Julia A. Weinstein, and Michael D. Ward
Dalton Trans., 2014, Volume 43, Number 17, Page 6414

Comments (0)

Please log in or register to comment.
Log in