Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 8

Issues

A “green” industrial revolution: Using chitin towards transformative technologies

Patrick S. Barber
  • Corresponding author
  • Center for Green Manufacturing and Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia L. Shamshina
  • Corresponding author
  • Center for Green Manufacturing and Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robin D. Rogers
  • Corresponding author
  • Center for Green Manufacturing and Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-27 | DOI: https://doi.org/10.1351/PAC-CON-12-10-14

Even with the high costs of environmental exposure controls, as well as the chance of control failures, options for industries wanting to implement sustainability through frameworks such as green chemistry are not yet cost-effective. We foresee a “green” industrial revolution through the use of transformative technologies that provide cost-effective and sustainable products which could lead to new business opportunities. Through example, we promote the use of natural and abundant biopolymers such as chitin, combined with the solvating power of ionic liquids (ILs), as a transformative technology to develop industries that are overall better and more cost-effective than current practices. The use of shellfish waste as a source of chitin for a variety of applications, including high-value medical applications, represents a total byproduct utilization concept with realistic implications in crustacean processing industries.

Keywords: biopolymers; chitin; green chemistry; polysaccharides; sustainable chemistry

Conference

International Conference on Green Chemistry (ICGC-4), IUPAC International Conference on Green Chemistry, ICGC, Green Chemistry , 4th, Foz do Iguaçu, Brazil, 2012-08-25–2012-08-29

References

  • 1

    http://www.epa.gov/regulations/laws/cwa.html, last accessed 10/13/12.Google Scholar

  • 2

    http://www.epa.gov/oppt/greenengineering/pubs/whats_ge.html, last accessed 10/13/12.Google Scholar

  • 3

    P. T. Anastas. Chem. Sus. Chem.2, 391 (2009).Google Scholar

  • 4

    P. T. Anastas, J. C. Warner. The Twelve Principles of Green Chemistry, Green Chemistry Theory and Practice, Oxford University Press (1998).Google Scholar

  • 5

    , P. T. Anastas, M. M. Kirchhoff. Acc. Chem. Res.35, 686 (2002).CrossrefGoogle Scholar

  • 6

    W. M. Adams. Report of the IUCN Renowned Thinkers Meeting, 29–31 January 2006.Google Scholar

  • 7

    United Nations Decade of Education for Sustainable Development (2005–2014), UNESCO Education Sector, International Implementation Scheme, ED/DESD/2005/PI/01, October 2005.Google Scholar

  • 8

    , J. B. Manley, P. T. Anastas, B. W. Cue Jr. J. Cleaner Production16, 743 (2008).CrossrefGoogle Scholar

  • 9

    , C. Ververis, K. Georghiou, N. Christodoulakis, P. Santas, R. Santas. Ind. Crops Prod.19, 245 (2004).CrossrefGoogle Scholar

  • 10

    S. Saka. In Wood and Cellulosic Chemistry, D. N.-S. Hon, N. Shiraishi (Eds.), Marcel Dekker, New York (2001).Google Scholar

  • 11

    , T. Eggeman, R. T. Elander. Bioresource Technol.96, 2019 (2005).CrossrefGoogle Scholar

  • 12

    , A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare, D. M. Kammen. Science311, 506 (2006).CrossrefGoogle Scholar

  • 13

    R. D. Rogers, K. R. Seddon. Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symposium Series No. 818, American Chemical Society, Washington DC (2002).Google Scholar

  • 14

    P. Wasserscheid, T. Welton. Ionic Liquids in Synthesis, Wiley-VCH, Weinheim (2008).Google Scholar

  • 15

    A. Stark, K. R. Seddon. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 26, A. Seidel (Ed.), p. 836, John Wiley (2007).Google Scholar

  • 16

    M. Petkovic, K. R. Seddon. Chem. Soc. Rev.37, 123 (2008).Google Scholar

  • 17

    , S. Chowdhury, R. S. Mohan, J. L. Scott. Tetrahedron63, 2363 (2007).CrossrefGoogle Scholar

  • 18

    H. Olivier-Bourbigou, L. Magna, D. Morvan. Appl. Catal. A373, 1 (2010).Google Scholar

  • 19

    , J. P. Hallett, T. Welton. Chem. Rev.111, 3508 (2011).CrossrefGoogle Scholar

  • 20

    J. Pernak, J. Shamshina, P. Tadeusz, A. Syguda, D. Janiszewska, M. Smiglak, G. Gurau, D. Daly, R. D. Rogers. U.S. Patent Application US2011/043016 (2011).Google Scholar

  • 21

    , R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers. J. Am. Chem. Soc.124, 4974 (2002).CrossrefGoogle Scholar

  • 22

    , D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers. Green Chem.9, 63 (2007).CrossrefGoogle Scholar

  • 23

    , N. Sun, H. Rodríguez, M. Rahman, R. D. Rogers. Chem. Commun.47, 1405 (2011).CrossrefGoogle Scholar

  • 24

    , H. Wang, G. Gurau, R. D. Rogers. Chem. Soc. Rev.41, 1519 (2012).CrossrefGoogle Scholar

  • 25

    , N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodríguez, R. D. Rogers. Green Chem.11, 646 (2009).CrossrefGoogle Scholar

  • 26

    N. Sun, X. Jiang, M. L. Maxim, A. Metlen, R. D. Rogers. Chem. Sus. Chem.4, 65 (2011).Google Scholar

  • 27a

    R. D. Rogers, J. E. Bonner, P. S. Barber, C. Griggs, T. S. Opichka, G. Gurau, R. P. Swatloski. U.S. Patent Application 61/674,979 filed 24 July 2012.Google Scholar

  • 27b

    R. D. Rogers, D. T. Daly, G. Gurau. PCT Int. Appl. WO 2011056924 A2 20110512 (2011).Google Scholar

  • 27c

    D. T. Daly, R. D. Rogers, Y. Qin. U.S. Patent Application 13/428786, filed 23 March 2012.Google Scholar

  • 27d

    Y. Qin, R. D. Rogers, D. T. Daly. US2012115729 A1 20120510.Google Scholar

  • 27e

    M. Rahman, H. Rodriguez, N. Sun, R. P. Swatloski, D. T. Daly, R. D. Rogers. U.S. Provisional Patent Application filed 19 February 2008; PCT Int. Appl., WO 2009105236 A1 20090827 (2009).Google Scholar

  • 27f

    R. D. Rogers, D. T. Daly, M. B. Turner. S. K. Spear, J. D. Holbrey. U.S. Patent Application 60/694,902, filed 29 June 2005; PCT Int. Appl. WO 2007005388 A3 (2007).Google Scholar

  • 27g

    J. D. Holbrey, R. P. Swatloski, J. Chen, D. T. Daly, R. D. Rogers. U.S. Patent Filed 27 March 2005; PCT Int. Appl. WO 2005098546 A2 (2005).Google Scholar

  • 27h

    R. P. Swatloski, R. D. Rogers, J. D. Holbrey, 30 November 2004, U.S. Patent No. 6,824,599 B2; International Application PCT/US02/31404; International Publication Number WO 03/029329 A2, 10 April 2003.Google Scholar

  • 28

    , N. L. B. M. Yusof, L. Y. Limb, E. Khora. Carbohydr. Res.339, 2701 (2004).CrossrefGoogle Scholar

  • 29

    , C. K. S. Pillai, W. Paul, C. P. Sharma. Prog. Polym. Sci.34, 641 (2009).CrossrefGoogle Scholar

  • 30

    , H. Tamura, T. Furuike, S. V. Nair, R. Jayakumar. Carbohydr. Polym.84, 820 (2011).CrossrefGoogle Scholar

  • 31

    , H. Nagahama, N. Nwe, R. Jayakumar, S. Koiwa, T. Furuike, H. Tamura. Carbohydr. Polym.73, 295 (2008).CrossrefGoogle Scholar

  • 32

    , D. H. Bartlett, F. Azam. Science310, 1775 (2005).CrossrefGoogle Scholar

  • 33

    , N. K. Mathur, C. K. Narang. J. Chem. Educ.67, 938 (1990).CrossrefGoogle Scholar

  • 34

    H. M. Cauchie. In Advances in Chitin Science, A. Domard, G. A. F. Roberts, K. M. Varum (Eds.), pp. 32–38, Jacques Andre, Lyon (1997).Google Scholar

  • 35

    R. Gillett. Global study of shrimp fisheries, Food and Agriculture Organization Report, p. 331, Rome (2008).Google Scholar

  • 36

    , P. Kandra, M. M. Challa, H. K. P. Jyothi. Appl. Microbiol. Biotechnol.93, 17 (2012).CrossrefGoogle Scholar

  • 37

    , M. W. Anthonsen, K. M. Vårum, A. M. Hermansson, O. Smidsrød, D. A. Brant. Carbohydr. Polym.25, 13 (1994).CrossrefGoogle Scholar

  • 38

    , A. Domard. Carbohydr. Polym.87, 696 (2011).CrossrefGoogle Scholar

  • 39

    , J. Li, Y. Du, J. Yang, T. Feng, A. Li, P. Chen. Polym. Degrad. Stabil.87, 441 (2005).CrossrefGoogle Scholar

  • 40

    V. T. Nguyen. Open Biomater. J.1, 21 (2009).Google Scholar

  • 41

    , R. Flores, S. Barrera-Rodríguez, K. Shirai, C. Durán-de-Bazúa. J. Appl. Polym. Sci.104, 3909 (2007).CrossrefGoogle Scholar

  • 42

    , N. L. Yusof, L. Y. Lim, E. Khor. J. Biomed. Mater. Res.54, 59 (2001).CrossrefGoogle Scholar

  • 43

    , J. Synowiecki, N. A. Al-Khateeb. Crit. Rev. Food Sci.43, 145 (2003).CrossrefGoogle Scholar

  • 44

    , K. V. Harish Prashanth, R. N. Thranathan. Trends Food Sci. Technol.18, 117 (2007).CrossrefGoogle Scholar

  • 45

    , R. A. A. Muzzarelli. Carbohydr. Polym.76, 167 (2009).CrossrefGoogle Scholar

  • 46

    , K. S. Chow, E. Khor, A. C. Wan. J. Polym. Res.8, 27 (2001).CrossrefGoogle Scholar

  • 47

    , Y. Okamoto, K. Kawekami, K. Miyatake, M. Morimoto, Y. Shigemosa, S. Minami. Carbohydr. Polym.49, 249 (2002).CrossrefGoogle Scholar

  • 48

    , E. Khor, L. Y. Lim. Biomaterials24, 2339 (2003).CrossrefGoogle Scholar

  • 49

    , I. Y. Kim, S. Y. Sio, H. S. Moon, M. K. Yoo, I. Y. Park, B. C. Kim, C. S. Cho. Biotechnol. Adv.26, 1 (2008).CrossrefGoogle Scholar

  • 50

    , R. A. R. Tasker, S. J. Ross, S. E. Dohoo, C. M. Elson. J. Vet. Pharmacol. Ther.20, 362 (1997).CrossrefGoogle Scholar

  • 51

    , A. Vila, I. Sanchez, T. Janes, J. L. Behrens, V. Kissel, M. Jato, J. Alonso. Eur. J. Pharm. Biopharm.57, 123 (2004).CrossrefGoogle Scholar

  • 52

    , Y. Kato, H. Onishi, Y. Machida. Curr. Pharm. Biotechnol.4, 303 (2003).CrossrefGoogle Scholar

  • 53

    , J. Z. Knaul, K. A. M. Creber. J. Appl. Polym. Sci.66, 117 (1997).CrossrefGoogle Scholar

  • 54

    , A. C. Agboh, Y. Qin. Polym. Adv. Technol.8, 355 (1997).CrossrefGoogle Scholar

  • 55

    , A. Percot, C. Viton, A. Domard. Biomacromolecules4, 12 (2003).CrossrefGoogle Scholar

  • 56

    N. S. Mahmoud, A. E. Ghaly, F. Arab. Am. J. Biochem. Biotechnol.3, 1 (2007).Google Scholar

  • 57

    , H. K. No, E. Y. Hur. J. Agric. Food Chem.46, 3844 (1998).CrossrefGoogle Scholar

  • 58

    , L. Meli, J. Miao, J. S. Dordick, R. J. Linhardt. Green Chem.12, 1883 (2010).CrossrefGoogle Scholar

  • 59

    , H. Sashiwa, Y. Shigemasa. Carbohydr. Polym.39, 127 (1999).CrossrefGoogle Scholar

  • 60

    , N. L. Yusof, A. Wee, L. Y. Lim, E. Khor. J. Biomed. Mater. Res. A66, 224 (2003).CrossrefGoogle Scholar

  • 61

    , M. N. V. Ravi Kumar. React. Funct. Polym.46, 1 (2000).CrossrefGoogle Scholar

  • 62

    , Y. Qin, X. Lu, N. Sun, R. D. Rogers. Green Chem.12, 968 (2010).CrossrefGoogle Scholar

  • 63

    Y. Qin, R. D. Rogers, D. T. Daly. PCT Int. Appl. WO 2010141470 A2 12/9/10 (2010).Google Scholar

  • 64

    , P. S. Barber, C. S. Griggs, J. R. Bonner, R. D. Rogers. Green Chem.15, 601 (2013).CrossrefGoogle Scholar

  • 65

    , R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna. Chem. Commun. 1271 (2006).CrossrefGoogle Scholar

  • 66

    , T. G. A. Youngs, C. Hardacre, J. D. Holbrey. J. Phys. Chem. B111, 3765 (2007).CrossrefGoogle Scholar

  • 67

    , M. Freemantle. Chem. Eng. News76, 32 (1998).CrossrefGoogle Scholar

  • 68

    , B. Wu, W. Liu, Y. Zhang, H. Wang. Chem.—Eur. J.15, 1804 (2009).CrossrefGoogle Scholar

  • 69

    , J. Synowiecki, N. A. Al-Khateeb. Crit. Rev. Food Sci.43, 145 (2003).CrossrefGoogle Scholar

  • 70

    , K. V. Harish Prashanth, R. N. Thranathan. Trends Food Sci. Technol.18, 117 (2007).CrossrefGoogle Scholar

  • 71

    http://www.aime.ua.edu/, last accessed 10/15/12.Google Scholar

About the article

Published Online: 2013-06-27

Published in Print: 2013-06-27


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 8, Pages 1693–1701, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-12-10-14.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Julia L. Shamshina, Adrian Kelly, Tetyana Oldham, and Robin D. Rogers
Environmental Chemistry Letters, 2019
[2]
Julia L. Shamshina, Paula Berton, and Robin D. Rogers
ACS Sustainable Chemistry & Engineering, 2019, Volume 7, Number 7, Page 6444
[3]
Rebeca Castro, Isabel Guerrero-Legarreta, and Rodrigo Bórquez
Biotechnology Reports, 2018, Page e00287
[4]
Sebastián Bonardd, Eduardo Robles, Irati Barandiaran, Cesar Saldías, Ángel Leiva, and Galder Kortaberria
Carbohydrate Polymers, 2018
[5]
Catherine King, Robin S. Stein, Julia L. Shamshina, and Robin D. Rogers
ACS Sustainable Chemistry & Engineering, 2017
[6]
Simone S. Silva, João F. Mano, and Rui L. Reis
Green Chem., 2017, Volume 19, Number 5, Page 1208
[7]
J. L. Shamshina, P. S. Barber, G. Gurau, C. S. Griggs, and R. D. Rogers
ACS Sustainable Chemistry & Engineering, 2016, Volume 4, Number 11, Page 6072
[8]
J. L. Shamshina, G. Gurau, L. E. Block, L. K. Hansen, C. Dingee, A. Walters, and R. D. Rogers
J. Mater. Chem. B, 2014, Volume 2, Number 25, Page 3924
[9]
Patrick S. Barber, Steven P. Kelley, Chris S. Griggs, Sergei Wallace, and Robin D. Rogers
Green Chem., 2014, Volume 16, Number 4, Page 1828
[10]
Patrick S. Barber, Chris S. Griggs, Gabriela Gurau, Zhen Liu, Shan Li, Zengxi Li, Xingmei Lu, Suojiang Zhang, and Robin D. Rogers
Angewandte Chemie, 2013, Volume 125, Number 47, Page 12576
[11]
Patrick S. Barber, Chris S. Griggs, Gabriela Gurau, Zhen Liu, Shan Li, Zengxi Li, Xingmei Lu, Suojiang Zhang, and Robin D. Rogers
Angewandte Chemie International Edition, 2013, Volume 52, Number 47, Page 12350

Comments (0)

Please log in or register to comment.
Log in