Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 9

Issues

Stereocontrolled 1-S-glycosylation and comparative binding studies of photoprobe-thiosaccharide conjugates with their O-linked analogs

Lingquan Deng
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Wang
  • Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suji Uppalapati
  • Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oscar Norberg
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hai Dong
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Rd. 1037, Wuhan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adrien Joliton
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mingdi Yan
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olof Ramström
  • Department of Chemistry, Royal Institute of Technology (KTH), Teknikringen 30, S-10044, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-26 | DOI: https://doi.org/10.1351/pac-con-12-08-13

The use of thioglycosides and other glycan derivatives with anomeric sulfur linkages is gaining increasing interest, both in synthesis and in various biological contexts. Herein, we demonstrate the occurrence and circumvention of anomerization during 1-S-glycosylation reactions, and present highly efficient and stereocontrolled syntheses of a series of photoprobe-thiosaccharide conjugates. Mutarotation of glycosyl thiols proved to be the origin of the anomeric mixtures formed, and kinetic effects could be used to circumvent anomerization. The synthesized carbohydrate conjugates were then evaluated by both solution- and solid-phase-based techniques. Both binding results showed that the S-linked glycosides interact with their cognate lectins comparably to the corresponding O-analogs in the present cases, thus demonstrating the reliability of the solid-support platform built upon our photo-initiated carbohydrate immobilization method for probing protein bindings, and showing the potential of combining these two means for studying carbohydrate–protein interactions.

: carbohydrates; organic materials; organic synthesis; photochemistry; protein interactions; stereocontrol

Conference

, 2012-07-22 - 2012-07-27, International Carbohydrate Symposium (ICS 2012), 26th, Madrid, Spain

  • H. Driguez. Top. Curr. Chem.187, 85 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. Horton, J. D. Wander. In The Carbohydrates: Chemistry and Biochemistry, pp. 799–842, Academic Press, New York (1980).Google Scholar

  • L. A. Marcaurelle, C. R. Bertozzi. Chem.—Eur. J.5, 1384 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. Pachamuthu, R. R. Schmidt. Chem. Rev.106, 160 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Z. Witczak, J. Culhane. Appl. Microbiol. Biotechnol.69, 237 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Qian, K. Sujino, M. M. Palcic, R. M. Ratcliffe. J. Carbohydr. Chem.21, 911 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Pazur, B. Liu, N. Li, Y. Lee. J. Protein Chem.9, 143 (1990). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Singer, M. Lopez, L. F. Bornaghi, A. Innocenti, D. Vullo, C. T. Supuran, S.-A. Poulsen. Bioorg. Med. Chem. Lett.19, 2273 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. L. C. Wright. In Biochemistry and Genetic Regulation of Commercially Important Antibiotics, L. C. Vining (Ed.), Addison-Wesley, London (1983).Google Scholar

  • R. T. Lee, S. Cascio, Y. C. Lee. Anal. Biochem.95, 260 (1979). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. R. Bundle, J. R. Rich, S. Jacques, H. N. Yu, M. Nitz, C.-C. Ling. Angew. Chem., Int. Ed.44, 7725 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • U. Nilsson, R. Johansson, G. Magnusson. Chem.—Eur. J.2, 295 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. A. Thayer, H. N. Yu, M. C. Galan, C.-H. Wong. Angew. Chem., Int. Ed.44, 4596 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Driguez. ChemBioChem2, 311 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. P. Gamblin, E. M. Scanlan, B. G. Davis. Chem. Rev.109, 131 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Knapp, E. Darout, B. Amorelli. J. Org. Chem.71, 1380 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. Horton, D. H. Hutson. In Advances in Carbohydrate Chemistry, D. Horton (Ed.), pp. 123–199, Academic Press (1963).Google Scholar

  • C. Xue, S. P. Jog, P. Murthy, H. Liu. Biomacromolecules7, 2470 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. F. M. van Dongen, H.-P. M. de Hoog, R. J. R. W. Peters, M. Nallani, R. J. M. Nolte, J. C. M. van Hest. Chem. Rev.109, 6212 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Chen, G. Chen, M. H. Stenzel. Macromolecules43, 8109 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. Caraballo, H. Dong, J. P. Ribeiro, J. Jiménez-Barbero, O. Ramström. Angew. Chem., Int. Ed.49, 589 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Z. Pei, R. Larsson, T. Aastrup, H. Anderson, J.-M. Lehn, O. Ramström. Biosens. Bioelectron.22, 42 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. Caraballo, M. Sakulsombat, O. Ramström. Chem. Commun.46, 8469 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. André, Z. Pei, H.-C. Siebert, O. Ramström, H.-J. Gabius. Bioorg. Med. Chem.14, 6314 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. M. Chabre, R. Roy. In Advances in Carbohydrate Chemistry and Biochemistry, D. Horton (Ed.), pp. 165–393, Elsevier (2010).Google Scholar

  • A. Dondoni, A. Marra. Chem. Rev.110, 4949 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Nelson, J. M. Belitsky, S. Vidal, C. S. Joiner, L. G. Baum, J. F. Stoddart. J. Am. Chem. Soc.126, 11914 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. A. Aksenova, Y. L. Sebyakin, A. F. Mironov. Russ. J. Bioorg. Chem.27, 124 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Hirohara, M. Obata, H. Alitomo, K. Sharyo, T. Ando, S. Yano, M. Tanihara. Bioconjugate Chem.20, 944 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Fernandez, C. Mellet, J. Defaye. J. Inclusion Phenom. Macrocyclic Chem.56, 149 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Marradi, M. Martín-Lomas, S. Penadés. In Advances in Carbohydrate Chemistry and Biochemistry, D. Horton (Ed.), pp. 211–290, Elsevier (2010).Google Scholar

  • M. Yu, Y. Yang, R. Han, Q. Zheng, L. Wang, Y. Hong, Z. Li, Y. Sha. Langmuir26, 8534 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • F. Nicotra, L. Cipolla, F. Peri, B. L. Ferla, C. Redaelli. In Advances in Carbohydrate Chemistry and Biochemistry, D. Horton (Ed.), pp. 353–398, Elsevier (2007).Google Scholar

  • S. Josse, J. Le Gal, M. Pipelier, J. Cléophax, A. Olesker, J.-P. Pradère, D. Dubreuil. Tetrahedron Lett.43, 237 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G.-J. Boons, T. Stauch. Synlett906 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. T. Connolly, S. Roseman, Y. C. Lee. Carbohydr. Res.87, 227 (1980). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M.-O. Contour, J. Defaye, M. Little, E. Wong. Carbohydr. Res.193, 283 (1989). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. P. R. Kartha, P. Cura, M. Aloui, S. K. Readman, T. J. Rutherford, R. A. Field. Tetrahedron: Asymmetry11, 581 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Aguirre-Valderrama, J. A. Dobado. J. Carbohydr. Chem.25, 557 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Bhattacharyya, C. F. Brewer. Eur. J. Biochem.176, 207 (1988). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Deng, O. Norberg, S. Uppalapati, M. Yan, O. Ramström. Org. Biomol. Chem.9, 3188 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Köhn, J. M. Benito, C. Ortiz Mellet, T. K. Lindhorst, J. M. García Fernández. ChemBioChem5, 771 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. García-Herrero, E. Montero, J. L. Muñoz, J. F. Espinosa, A. Vián, J. L. García, J. L. Asensio, F. J. Cañada, J. Jiménez-Barbero. J. Am. Chem. Soc.124, 4804 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. K. Dam, C. F. Brewer. Chem. Rev.102, 387 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. N. Knibbs, N. Agrwal, J. L. Wang, I. J. Goldstein. J. Biol. Chem.268, 14940 (1993).Google Scholar

  • M. Cho, R. D. Cummings. Biochemistry35, 13081 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • B. D. Polizzotti, R. Maheshwari, J. Vinkenborg, K. L. Kiick. Macromolecules40, 7103 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Gervay, K. D. McReynolds. Curr. Med. Chem.6, 129 (1999).Google Scholar

  • X. Wang, O. Ramström, M. Yan. Anal. Chem.82, 9082 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Tejler, H. Leffler, U. J. Nilsson. Bioorg. Med. Chem. Lett.15, 2343 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. A. Johnson, B. M. Pinto. Carbohydr. Res.339, 907 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Tyagi, X. Wang, L. Deng, O. Ramström, M. Yan. Biosens. Bioelectron.26, 344 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • O. Norberg, L. Deng, T. Aastrup, M. Yan, O. Ramström. Anal. Chem.83, 1000 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • O. Norberg, L. Deng, M. Yan, O. Ramström. Bioconjugate Chem.20, 2364 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Z. Pei, H. Yu, M. Theurer, A. Waldén, P. Nilsson, M. Yan, O. Ramström. ChemBioChem8, 166 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. Madwar, W. Chu Kwan, L. Deng, O. Ramström, R. Schmidt, S. Zou, L. A. Cuccia. Langmuir26, 16677 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. Larsen, M. B. Thygesen, F. Guillaumie, W. G. T. Willats, K. J. Jensen. Carbohydr. Res.341, 1209 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. C. Lee, R. T. Lee. Acc. Chem. Res.28, 321 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. J. Lundquist, E. J. Toone. Chem. Rev.102, 555 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Cohen, A. Varki. OMICS14, 455 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Liu, M. Yan. Angew. Chem., Int. Ed.45, 6207 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L.-H. Liu, M. M. Lerner, M. Yan. Nano Lett.10, 3754 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L.-H. Liu, M. Yan. Acc. Chem. Res.43, 1434 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Wang, E. Matei, L. Deng, O. Ramström, A. M. Gronenborn, M. Yan. Chem. Commun.47, 8620 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. S. Isbell, W. Pigman. In Advances in Carbohydrate Chemistry, D. Horton (Ed.), pp. 13–65, Elsevier (1970).Google Scholar

  • R. Caraballo, L. Deng, L. Amorim, T. Brinck, O. Ramström. J. Org. Chem.75, 6115 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. N. Yu, C.-C. Ling, D. R. Bundle. J. Chem. Soc., Perkin Trans. 1832 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. Crich, H. Li. J. Org. Chem.65, 801 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. Mukhopadhyay, D. Seebach. Helv. Chim. Acta65, 385 (1982). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Encinas, J. L. Chiara. Eur. J. Org. Chem.2163 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. G. S. Box. Heterocycles31, 1157 (1990). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. G. S. Box. Heterocycles19, 1939 (1982). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. R. Schmidt, J. Michel. Tetrahedron Lett.25, 821 (1984). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. J. L. Bernardes, E. J. Grayson, S. Thompson, J. M. Chalker, J. C. Errey, F. El Oualid, T. D. W. Claridge, B. G. Davis. Angew. Chem., Int. Ed.47, 2244 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • F. P. Schwarz, K. D. Puri, R. G. Bhat, A. Surolia. J. Biol. Chem.268, 7668 (1993).Google Scholar

  • G. B. Reddy, V. R. Srinivas, N. Ahmad, A. Surolia. J. Biol. Chem.274, 4500 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Wang, L. Li, Q. Tong, M. Yan. ACS Appl. Mater. Interfaces3, 3463 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

About the article

Published Online: 2013-01-26

Published in Print: 2013-09-01


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 9, Pages 1789–1801, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac-con-12-08-13.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bin Wu, Xiaojian Yang, and Mingdi Yan
Journal of Medicinal Chemistry, 2019, Volume 62, Number 17, Page 7751
[2]
Iván García-González, Lara Mata, Francisco Corzana, Gonzalo Jiménez-Osés, Alberto Avenoza, Jesús H. Busto, and Jesús M. Peregrina
Chemistry - A European Journal, 2015, Volume 21, Number 3, Page 1156
[3]
Carlos Aydillo, Ismael Compañón, Alberto Avenoza, Jesús H. Busto, Francisco Corzana, Jesús M. Peregrina, and María M. Zurbano
Journal of the American Chemical Society, 2014, Volume 136, Number 2, Page 789

Comments (0)

Please log in or register to comment.
Log in