Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 85, Issue 9

Issues

Assessment of theoretical methods for the study of hydrogen abstraction kinetics of global warming gas species during their degradation and byproduct formation (IUPAC Technical Report)

Ponnadurai Ramasami / Hassan H. Abdallah / Edet F. Archibong / Paul Blowers / Thomas A. Ford / Rita Kakkar / Zhigang Shuai / Henry F. Schaefer III
Published Online: 2013-08-28 | DOI: https://doi.org/10.1351/pac-rep-10-02-38

Global climate change is a major concern as it leads to an increase in the average temperature of the earth’s atmosphere. The existence and persistence of some gaseous species in the atmosphere contribute to global warming. Experimental techniques are used to study the kinetics and degradation of global warming gases. However, quantum mechanical methods are also useful for the kinetic and radiative forcing study of global warming species and can precede experimental investigations. Research has also been targeted to develop more adapted procedures using ab initio and density functional theory (DFT) methods. This report provides a global perspective, in simplified manner, of the theoretical studies of the degradation of gas species in the atmosphere with an emphasis on the hydrogen abstraction kinetics of global warming gas species during their degradation and byproduct formation. En route, the results obtained from these studies are analysed and compared with experimental data where available. Our analyses indicate that the theoretical predictions are in agreement with experimental findings but the predicted parameters are dependent on the method being used. Theoretical methods are used to predict the thermodynamic parameters of reactions, and, with relevance to this report, the global warming potential (GWP) index can also be calculated. This report can be useful for future investigations involving global warming gaseous species while providing suggestions on how computations can fill in data gaps when experimental data are unavailable.

: ab initio methods; degradation; density functional theory; experimental methods; global warming potential; global warming species; hydrogen abstraction; IUPAC Physical and Biophysical Chemistry Division; kinetics

  • M. R. May. Science41, 1441 (1988). (http://dx.doi.org/)CrossrefGoogle Scholar

  • An M. De Schryver, K. W. Brakkee, M. J. Goedkoop, M. A. J. Huijbregts. Environ. Sci. Technol.43, 1689 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. Ya. Vinnikov. J. Climate3, 662 (1990). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. D. Jones. J. Clim. Appl. Meteorol.25, 161 (1986).CrossrefGoogle Scholar

  • P. D. Jones. J. Clim. Appl. Meteorol.25, 1213 (1986).CrossrefGoogle Scholar

  • W. S. Broecker. Science189, 460 (1975). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. J. Crowley. Climate Change61, 259 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Turchetto, S. Vanin. Forensic Sci. Int.146, S207 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, M. D. Samuel. Science296, 2158 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. C. Schelling. Am. Econ. Rev.82, 1 (1992).Google Scholar

  • United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998). http://unfccc.int/kyoto_protocol/items/2830.php (accessed Aug. 2013).Google Scholar

  • S. R. Weart. In The Discovery of Global Warming (New Histories of Science, Technology, and Medicine), First Harvard University Press, USA (2004).Google Scholar

  • S. K. Solanki, N. A. Krivova. J. Geophys. Res.108, 1200 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. P. Bera, J. S. Francisco, T. J. Lee. J. Phys. Chem. A113, 12694 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland. “Changes in atmospheric constituents and in radiative forcing”, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Cambridge University Press, Cambridge (2007).Google Scholar

  • G. Myhre, C. J. Nielsen, D. L. Powell, F. Storda. Atmos. Environ.33, 4447 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. A. Lashof, D. R. Ahuja. Nature344, 529 (1990). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell (Eds.). In Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge (1996).Google Scholar

  • Climate report, Issue 97-1, Environment Canada, Spring (1997).Google Scholar

  • Climate report, Special issue, Environment Canada (1993).Google Scholar

  • M. S. Alnajjar, M. S. Garrossian, S. T. Autrey, K. T. Ferris, J. A. Franz. J. Phys. Chem.96, 7037 (1992). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. M. Rowley, R. Lesclaux, P. D. Lightfoot, K. Hughes, M. D. Hurley, S. Rudy, T. J. Wallington. J. Phys. Chem.96, 7043 (1992). (http://dx.doi.org/)CrossrefGoogle Scholar

  • F.-D. Kopinke, M. Remmler, H. Mensing, P. Hugo. J. Phys. Chem.98, 1171 (1994). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. A. Manion, W. Tsang. J. Phys. Chem.100, 7060 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. J. Molina, L. T. Molina, C. E. Kolb. Annu. Rev. Phys. Chem.47, 327 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. S. Pilgrim, C. A. Taatjes. J. Phys. Chem.101, 4172 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. Didierjean, G. Buntinx, O. Poizat. J. Phys. Chem.102, 7938 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • W. S. McGivern, H. Kim, J. S. Francisco, S. W. North. J. Phys. Chem. A108, 7247 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • IPCC. Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R. K. Pachauri, A. Reisinger (Eds.), IPCC, Geneva (2007).Google Scholar

  • H. Tachikawa, N. Hokari, H. Yoshida. J. Phys. Chem.97, 10035 (1993). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. D. Dobbs, D. A. Dixon. J. Phys. Chem.98, 12584 (1994). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. F. Logan, P. Chen. J. Am. Chem. Soc.118, 2113 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Morita, S. Kato. J. Am. Chem. Soc.119, 4021 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. Luo, D. C. Kombo, R. Osman. J. Phys. Chem. A101, 926 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Basch, S. Hoz. J. Phys. Chem. A101, 4416 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Schwartz, P. Marshall, R. J. Berry, C. J. Ehlers, G. A. Petersson. J. Phys. Chem. A102, 10074 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. H. A. Schimmel, P. J. A. Ruttink, B. H. W. S de Jong. J. Phys. Chem. B103, 10506 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. Strassner, K. N. Houk. J. Am. Chem. Soc.122, 7821 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. K. Chandra, T. Uchimaru. J. Phys. Chem. A104, 8535 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Zhang, Y.-H. Ding, Z.-S. Li, X.-R. Huang, C.-C. Sun. J. Phys. Chem. A104, 8375 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. K. Chandra, T. Uchimaru. J. Phys. Chem. A104, 9244 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P.-Y. Lien, R.-M. You, W.-P. Hu. J. Phys. Chem. A105, 2391 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S.-M. Li, X. Yu, Z.-F. Xu, Z.-S. Li, C.-C. Sun. J. Phys. Chem. A105, 3967 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Yu, S.-M. Li, Z.-F. Xu, Z.-S. Li, C.-C Sun. J. Phys. Chem. A105, 7072 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. L. Heidbrink, L. E. Ramírez-Arizmendi, K. K. Thoen, L. Guler, H. I. Kenttämaa. J. Phys. Chem. A105, 7875 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Shaik, W. Wu, K. Dong, L. Song, P. C. Hiberty. J. Phys. Chem. A105, 8226 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. González-Lafont, J. M. Lluch, J. Espinosa-García. J. Phys. Chem. A105, 10553 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Braña, J. A. Sordo. J. Am. Chem. Soc.123, 10348 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J.-F. Xiao, Z.-S. Li, Y.-H. Ding, J.-Y. Liu, X.-R. Huang, C.-C. Sun. J. Phys. Chem. A106, 320 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Espinosa-García. J. Phys. Chem. A106, 5686 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J.-F. Xiao, Z.-S. Li, J.-Y. Liu, L. Sheng, C.-C Sun. J. Phys. Chem. A107, 267 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Zhang, T. N. Truong. J. Phys. Chem. A107, 1138 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. H. Mousavipour, M. A. Namdar-Ghanbari, L. Sadeghian. J. Phys. Chem. A107, 3752 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. G. Smagala, B. J. McCoy. Ind. Eng. Chem. Res.42, 2461 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. D. Beare, M. L. Coote. J. Phys. Chem. A108, 1138 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. M. Anglada. J. Am. Chem. Soc.126, 9809 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Taghikhani, G. A. Parsafar. J. Phys. Chem. A109, 8158 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. K. Huynh, A. Ratkiewicz, T. N. Truong. J. Phys. Chem. A110, 473 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. Hemelsoet, V. Van Speybroeck, D. Moran, G. B. Marin, L. Radom, M. Waroquier. J. Phys. Chem. A110, 13624 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. C. de Lucas, R. J. Correa, A. C. C. Albuquerque, C. L. Firme, S. J. Garden, A. R. Bertoti, J. C. Netto-Ferreira. J. Phys. Chem. A111, 1117 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. K. Huynh, S. Panasewicz, A. Ratkiewicz, T. N. Truong. J. Phys. Chem. A111, 2156 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. K. Irikura, J. S. Francisco. J. Phys. Chem. A111, 6852 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Wang, J.-Y. Liu, L. Yang, X.-L. Zhao, Y.-M. Ji, Z.-S. Li. J. Phys. Chem. A111, 7761 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Taghikhani, G. A. Parsafar. J. Phys. Chem. A111, 8095 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. Troya. J. Phys. Chem. A111, 10745 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. R. Zhou, K. Sendt, B. A. Haynes. J. Phys. Chem. A112, 3239 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Gao, Y. Wang, J.-Y Liu, L. Yang, Z.-S. Li, C.-C. Sun. J. Phys. Chem. A112, 4176 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Jing, J. J. Nash, H. I. Kenttämaa. J. Am. Chem. Soc.130, 17697 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. da Silva, J. W. Bozzelli, R. Asatryan. J. Phys. Chem. A113, 8596 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Jørgensen, H. G. Kjaergaard. J. Phys. Chem. A114, 4857 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Moc, J. M. Simmie. J. Phys. Chem. A114, 5558 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Beste, A. C. Buchanan III. Energy Fuels24, 2857 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Seal, E. Papajak, D. G. Truhlar. J. Phys. Chem. Lett.3, 264 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Beccaceci, N. Armata, J. S. Ogden, J. M. Dyke, L. Rhyman, P. Ramasami. Phys. Chem. Chem. Phys.14, 2399 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Rhyman, N. Armata, P. Ramasami, J. M. Dyke. J. Phys. Chem. A116, 5595 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Papasavva, S. Tai, A. Esslinger, K. H. Illinger, J. E. Kenny. J. Phys. Chem. A99, 3438 (1995).Google Scholar

  • M. H. Huesemann. Mitig. Adapt. Strat. Global Change11, 1573 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. S. Francisco. Comput. Theoret. Chem.965, 248 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. A. Good, J. S. Francisco, A. K. Jain, D. J. Wuebbles. J. Geophys. Res.103, 181 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. L. Orkin, E. Villenave, R. E. Huie, M. J. Kurylo. J. Phys. Chem. A103, 9770 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. P. Sulbaek Andersen, M. D. Hurley, T. J. Wallington, F. Blandini, N. R. Jensen, V. Librando, J. Hjorth, G. Marchionni, M. Avataneo, M. Visca, F. M. Nicolaisen, O. J. Nielsen. J. Phys. Chem. A108, 1964 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. J. Wallington, M. D. Hurley, O. J. Nielsen, M. P. S. Andersen. J. Phys. Chem. A108, 11333 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. Oyaro, S. R. Sellevåg, C. J. Nielsen. Environ. Sci. Technol.38, 5567 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. Oyaro, S. R. Sellevåg, C. J. Nielsen. J. Phys. Chem. A109, 337 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. P. Sulbaek Andersen, O. J. Nielsen, T. J. Wallington, M. D. Hurley, W. B. DeMore. J. Phys. Chem. A109, 3926 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. J. Young, M. D. Hurley, T. J. Wallington, S. A. Mabury. Environ. Sci. Technol.40, 2242 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Blowers, D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. Environ. Sci. Technol.42, 1301 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. J. C. Crabbe. Comput. Biol. Chem.32, 311 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. B. Millet, E. L. Atlas, D. R. Blake, N. J. Blake, G. S. Diskin, J. S. Holloway, R. C. Hudman, S. Meinardi, T. B. Ryerson, G. W. Sachse. Environ. Sci. Technol.43, 1055 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. P. Sulbaek Andersen, D. R. Blake, F. S. Rowland, M. D. Hurley, T. J. Wallington. Environ. Sci. Technol.43, 1067 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. P. Sulbaek Andersen, O. J. Nielsen, B. Karpichev, T. J. Wallington, S. P. Sander. J. Phys. Chem. A116, 5806 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • F. Bernardi, A. Bottoni. J. Phys. Chem. A101, 1912 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. D. Tanner, L. Zhang, P. Kandanarachchi. J. Phys. Chem. A101, 9327 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Bottoni. J. Phys. Chem. A102, 10142 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. M. Mayer, C. J. Parkinson, D. M. Smith, L. Radom. J. Chem. Phys.108, 604 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Ma, H. H. Schobert. Ind. Eng. Chem. Res.40, 743 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. Galano, J. R. Alvarez-Idaboy, M. E. Ruiz-Santoyo, A. Vivier-Bunge. J. Phys. Chem. A106, 9520 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • X. Ma, H. H. Schobert. Ind. Eng. Chem. Res.42, 1151 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. L. Coote. J. Phys. Chem. A108, 3865 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. A. Sansón, M.-L. Sánchez, J. C. Corchado. J. Phys. Chem. A110, 589 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Aguilera-Iparraguirre, H. J. Curran, W. Klopper, J. M. Simmie. J. Phys. Chem. A112, 7047 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. Yoshida, K. Hirozumi, M. Harada, S. Hitaoka, H. Chuman. J. Org. Chem. A76, 4564 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. S. Petit, J. N. Harvey. Phys. Chem. Chem. Phys.14, 184 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. L. Janssen, J. P. Kenny, I. M. B. Nielsen, M. Krishnan, V. Gurumoorthi, E. F. Valeev, T. L. Windus. J. Phys.: Conf. Series46, 220 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. B. Lipkowitz, D. B. Boyd. In Reviews in Computational Chemistry, K. B. Lipkowitz, D. B. Boyd (Eds.), p. ix, VCH, New York (1989).Google Scholar

  • N. L. Allinger, U. Burkert. Molecular Mechanics, American Chemical Society, Washington, DC (1982).Google Scholar

  • J. A. Pople, D. L. Beveridge. In Approximate Molecular Orbital Theory, McGraw Hill, New York (1970).Google Scholar

  • K. P. Lawley. Ab Initio Methods in Quantum Chemistry, John Wiley, Chichester (1987).Google Scholar

  • D. C. Young. Computational Chemistry, John Wiley, New York (2001).Google Scholar

  • E. Schrödinger. Phys. Rev.28, 1049 (1926). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Born, K. Huang. In Dynamical Theory of Crystal Lattices, appendices VII and VIII, Oxford University Press, London (1954).Google Scholar

  • M. Born, J. R. Oppenheimer. Ann. Phys. Leipzig84, 457 (1927). (http://dx.doi.org/)CrossrefGoogle Scholar

  • F. Hund. Z. Physik36, 657 (1926). (http://dx.doi.org/)CrossrefGoogle Scholar

  • E. Davidson, D. Feller. Chem. Rev.86, 681 (1986). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. S. Mulliken. Science157, 13 (1967). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Echenique, J. L. Alonso. Mol. Phys.105, 3057 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. C. Slater. Phys. Rev.91, 528 (1953). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. N. Hurley, D. L. Huestis, W. A. Goddard III. J. Phys. Chem. A92, 4880 (1998).Google Scholar

  • D. D. Fitts. Principles of Quantum Mechanics, As Applied to Chemistry and Chemical Physics, Cambridge University Press, Cambridge (1999).Google Scholar

  • A. Ferrón, P. Serra. J. Chem. Theory Comput.2, 306 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. Møller, M. S. Plesset. Phys. Rev.46, 618 (1934). (http://dx.doi.org/)CrossrefGoogle Scholar

  • I. Lindgren. J. Phys. B: Atom. Mol. Phys.7, 2441 (1974). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. H. Dunning Jr. J. Phys. Chem. A104, 9062 (2000). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. L. Malli, M. Siegert, D. P. Turner. Int. J. Quantum Chem.99, 940 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley. Int. J. Quantum. Chem.14, 545 (1978). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. J. Bartlett, G. D. Purvis. Int. J. Quantum Chem.14, 516 (1978). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Cizek. In Advances in Chemical Physics, Vol. 14, P. C. Hariharan (Ed.), Wiley-Interscience, New York (1969).Google Scholar

  • K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon. Chem. Phys. Lett.157, 479 (1989). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. A. Pople, M. Head-Gordon, K. Raghavachari. J. Chem. Phys.87, 5968 (1987). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Hohenberg, W. Kohn. Phys. Rev.136, B864 (1964). (http://dx.doi.org/)CrossrefGoogle Scholar

  • W. Kohn, L. J. Sham. Phys. Rev.140, A1133 (1965). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. G. Parr, W. Yang. Annu. Rev. Phys. Chem.46, 701 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. D. Becke. J. Chem. Phys.98, 5648 (1993). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. Baker, J. Andzelm, M. Muir, P. R. Taylor. Chem. Phys. Lett.237, 53 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. L. Durant. Chem. Phys. Lett.256, 595 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Zhao, B. J. Lynch, D. G. Truhlar. J. Phys. Chem. A108, 2715 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Zhao, D. G. Truhlar. J. Phys. Chem. A108, 6908 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. D. Boese, J. M. L. Martin. J. Chem. Phys.121, 3405 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • Y. Zhao, D. G. Truhlar. Theor. Chem. Acc.120, 215 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. E. Wheeler, K. N. Houk. J. Chem. Theory Comput.6, 395 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss. J. Chem. Phys.90, 5622 (1989). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, J. A. Pople. J. Chem. Phys.93, 2537 (1990). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople. J. Chem. Phys.94, 7221 (1991). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople. J. Chem. Phys.109, 7764 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. A. Curtiss, P. C. Redfern, K. Raghavachari. J. Chem. Phys.126, 84108 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. R. Nyden, G. A. Petersson. J. Chem. Phys.75, 1843 (1981). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. M. Mayer, C. J. Parkinson, D. M. Smith, L. Radom. J. Chem. Phys.108, 604 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. M. L. Martin, G. De Oliveira. J. Chem. Phys.111, 1843 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. D. Boese, M. Oren, O. Atasoylu, J. M. L Martin, M. Kállay, J. Gauss. J. Chem. Phys.120, 4129 (2004). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. E. Harding, J. Vazquez, B. Ruscic, A. K. Wilson, J. Gauss, J. F. Stanton. J. Chem. Phys.128, 114111 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • B. Mintz, G. T. Williams, L. Howard, A. K. Wilson. J. Chem. Phys.130, 234104 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. A. Oyedepo, A. K. Wilson. J. Phys. Chem. A114, 8806 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. L. Allinger, J. T. Fermann, W. D. Allen, H. F. Schaefer III. J. Chem. Phys.106, 5143 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. G. Császár, W. D. Allen, H. F. Schaefer III. J. Chem. Phys.108, 9751 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. G. Császár, M. L. Leininger, V. Szalay. J. Chem. Phys.118, 10631 (2003). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. M. Balabin. J. Chem. Phys.129, 164101 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • R. M. Balabin. J. Phys. Chem. A113, 1012 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. G. Truhlar, A. D. Issacson, B. C. Barrett. In Generalized Transition State Theory, Vol. 4 of Theory of Chemical Reaction Dynamics, p. 65, CRC Press, Boca Raton (1985).Google Scholar

  • M. J. Pilling, P. W. Seakins. In Reaction Kinetics, 2nd ed., Oxford Science, Oxford (1995).Google Scholar

  • P. R. P. Barreto, A. F. A. Vilela, R. Gargano. J. Mol. Struct. (THEOCHEM)197, 639 (2003).Google Scholar

  • P. R. P. Barreto, A. F. A. Vilela, R. Gargano. Int. J. Quantum Chem.103, 685 (2005). (http://dx.doi.org/)CrossrefGoogle Scholar

  • E. P. Wigner. Z. Phys. Rev. Chem. Abt. B19, 203 (1932).Google Scholar

  • B. C. Barrett, D. G. Truhlar. J. Phys. Chem.83, 1079 (1979).Google Scholar

  • R. T. Skodje, D. G. Truhlar, B. C. Barrett. J. Phys. Chem.85, 3019 (1981). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. S. Melissas, D. G. Truhlar. J. Chem. Phys.99, 3542 (1993). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. R. Barker (Ed.). Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical Chemistry 3, World Scientific, Singapore (1995).Google Scholar

  • K. Runge, M. G. Cory, R. J. Barlett. J. Chem. Phys.114, 5141 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • T. J. Wallington, A. Guschin, T. N. N. Stein, J. Platz, J. Sehested, L. K. Christensen, O. J. Nielsen. J. Phys. Chem. A102, 1152 (1998). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. L. Orkin, E. Villenave, R. E. Huie, M. J. Kurylo. J. Phys. Chem. A103, 9770 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. L. Cooper, T. P. Cunningham, N. L. Allan, A. McCulloch. Atmos. Environ.26A, 1331 (1992).Google Scholar

  • D. A. Good, M. Kamboures, R. Santiano, J. S. Francisco. J. Phys. Chem. A103, 9230 (1999). (http://dx.doi.org/)CrossrefGoogle Scholar

  • W. Lei, R. Zhang, L. T. Molina, M. J. Molina. J. Phys. Chem. A106, 6415 (2002). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. J. Singh, B. K. Mishra, N. K. Gaur. Theor. Chem. Acc.125, 57 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. S. Francisco, M. M. Maricq. Acc. Chem. Res.29, 391 (1996). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. D. Hayman, R. G. Derwent. Environ. Sci. Technol.31, 327 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Yamazaki, H. Abe, T. Tanimura, Y. Yamasaki, K. Kanaori, K. Tajima. Res. Chem. Intermed.35, 91 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. K. Chandra, T. Uchimaru, M. Sugie. Phys. Chem. Chem. Phys.3, 3961 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. J. Scollard, J. J. Treacy, H. W. Sidebottom, C. Balestra-Garcia, G. Laverdet, G. Le Bras, H. MacLeod, S. Teton. J. Phys. Chem.97, 4683 (1993). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Dobe, L. A. Khachatryan, T. Berces. Ber. Bunsenges Phys. Chem.93, 847 (1989). (http://dx.doi.org/)CrossrefGoogle Scholar

  • C. Balestra-Garcia, G. Le Bras, H. MacLeod. J. Phys. Chem.96, 3312 (1992). (http://dx.doi.org/)CrossrefGoogle Scholar

  • H. Somnitz, R. Zellner. Phys. Chem. Chem. Phys.3, 2353 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • G. Fontana, M. Causà, V. Gianotti, G. Marchionni. J. Fluorine Chem.109, 113 (2001). (http://dx.doi.org/)CrossrefGoogle Scholar

  • W. B. DeMore, W. B. Golden, D. M. Hampson, R. F. Howard, C. J. Kold, C. E. Kurylo, M. J. Molina, M. J. Ravishankara, A. R. Santer, S. Medeling. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 94-26, Jet Propulsion Laboratory, California Institute of Technology, Pasadena (1994).Google Scholar

  • K. J. Hsu, W. B. De More. J. Phys. Chem.99, 11141 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • N. L. Garland, I. J. Medhurst, H. H. Nelson. J. Geophys. Res.98, 23107 (1993). (http://dx.doi.org/)CrossrefGoogle Scholar

  • K. J. Hsu, W. B. De More. J. Phys. Chem.99, 1235 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • L. Yang, J.-Y. Liu, S.-Q. Wan, Z.-S. Li. J. Comput. Chem.30, 565 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. W. Martin, D. A. Ellis, S. A. Mabury. Environ. Sci. Technol.40, 864 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. C. D’eon, M. D. Hurley, T. J. Wallington, S. A. Mabury. Environ. Sci. Technol.40, 1862 (2006). (http://dx.doi.org/)CrossrefGoogle Scholar

  • V. C. Papadimitriou, R. W. Portmann, D. W. Fahey, J. Muhle, R. F. Weiss, J. B. Burkholder. J. Phys. Chem. A112, 1862 (2006).Google Scholar

  • M. P. Sulbaek Andersen, D. R. Blake, F. S. Rowland, M. D. Hurley, T. J. Wallington. Environ. Sci. Technol.43, 1067 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. K. Bruska, J. Piechota. Mol. Simulat.34, 1041 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • W. Xu, C. Xiao, Q. Li, Y. Xie, H. F. Schaefer III. Mol. Phys.43, 1067 (2009).Google Scholar

  • P. Blowers, D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. J. Geophys. Res.112, D15108 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. Pinnock, M. D. Hurley, K. P. Shine, T. J. Wallington, T. J. Smyth. J. Geophys. Res.100, 23227 (1995). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Blowers, K. F. Tetrault, Y. Trujillo-Morehead. Ind. Eng. Chem. Res.46, 6600 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • S. W. Benson. In Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., John Wiley, New York (1976).Google Scholar

  • K. A. Gillis. Int. J. Thermophys.15, 821 (1994). (http://dx.doi.org/)CrossrefGoogle Scholar

  • D. R. Defibaugh, K. A. Gillis, M. R. Moldover, G. Morrison, J. W. Schmidt. Fluid Phase Equilib.81, 285 (1992). (http://dx.doi.org/)CrossrefGoogle Scholar

  • J. J. Hurly, J. W. Schmidt, K. A. Gillis. Int. J. Thermophys.18, 137 (1997). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Blowers, K. F. Tetrault, Y. Trujillo-Morehead. Theor. Chem. Acc.119, 369 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Blowers, D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. Environ. Sci. Technol.42, 1301 (2008). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. Blowers, K. Hollingshead. J. Phys. Chem. A113, 5942 (2009). (http://dx.doi.org/)CrossrefGoogle Scholar

  • A. G. Vandeputte, M. K. Sabbe, M.-F. Reyniers, V. V. Speybroeck, M. Waroquier, G. B. Martin. J. Phys. Chem. A111, 11771 (2007). (http://dx.doi.org/)CrossrefGoogle Scholar

  • I. Bravo, G. Marston, D. R. Nutt, K. P. Shine. J. Quant. Spectrosc. Radiat. Transfer112, 1967 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • I. Bravo, A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, T. J. Wallington. J. Geophys. Res.115, D24317 (2010). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. Baasandorj, A. R. Ravishankara, J. B. Burkholder. J. Phys. Chem. A115, 10539 (2011). (http://dx.doi.org/)CrossrefGoogle Scholar

  • M. P. Sulbaek Andersen, O. J. Nielsen, B. Karpichev, T. J. Wallington, S. P. Sander. J. Phys. Chem. A116, 5806 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

  • P. R. Dalmasso, R. A. Taccone, J. D. Nieto, P. M. Cometto, S. I. Lane. Atmos. Environ.116, 5806 (2012).Google Scholar

  • D. E. Heard, A. Saiz-Lopez. Chem. Soc. Rev.41, 6229 (2012). (http://dx.doi.org/)CrossrefGoogle Scholar

About the article

Published Online: 2013-08-28

Published in Print: 2013-09-01


Citation Information: Pure and Applied Chemistry, Volume 85, Issue 9, Pages 1901–1918, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac-rep-10-02-38.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Luís P. Viegas
International Journal of Quantum Chemistry, 2017, Volume 117, Number 15, Page e25381

Comments (0)

Please log in or register to comment.
Log in