Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

See all formats and pricing
More options …
Volume 86, Issue 2 (Feb 2014)


Solvation of a sponge-like geometry

Myfanwy E. Evans / Roland Roth
Published Online: 2014-02-05 | DOI: https://doi.org/10.1515/pac-2014-5027


Periodic entanglements of filaments and networks, which resemble sponge-like materials, are often found as self-assembled materials. The interaction between the geometry of the assembly and a solvent in its interstices can dictate the geometric configuration of the structure as well as influence macroscopic properties such as swelling and mechanics. In this paper, we show the calculation of the solvation free energy as a function of the solute–solvent interaction from hydrophilic to hydrophobic, for a candidate entanglement of filaments. We do this using the morphometric approach to solvation free energy, a method that disentangles geometric properties from thermodynamic coefficients, which we compute via density functional theory.

Keywords: biomaterials; geometry; helical structures; solvation; sponge phases; structure–function; thermodynamics


  • [1]

    K. Larsson, K. Fontell, N. Krog. Chem. Phys. Lipids 27, 321 (1980).Google Scholar

  • [2]

    S. T. Hyde, S. Andersson, B. Ericsson, K. Larsson. Z. Kristallogr. 168, 2139 (1984).Google Scholar

  • [3]

    K. Larsson. J. Phys. Chem. 93, 7304 (1989).Google Scholar

  • [4]

    S. T. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, B. W. Ninham. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology, Elsevier Science B.V. (1997).Google Scholar

  • [5]

    V. Luzzati. Curr. Opin. Struct. Biol. 7, 661 (1997).PubMedGoogle Scholar

  • [6]

    Z. A. Almsherqi, S. D. Kohlwein, Y. Deng. J. Cell Biol. 173, 839 (2006).Google Scholar

  • [7]

    K. Michielsen, D. G. Stavenga. J. R. Soc. Interface 5, 85 (2008).Google Scholar

  • [8]

    T. Landh. FEBS Lett. 369, 13 (1995).Google Scholar

  • [9]

    K. R. Mecke. J. Phys.: Condens. Matter 8, 9663 (1996).Google Scholar

  • [10]

    K. Mecke, C. H. Arns. J. Phys.: Condens. Matter 17, S503 (2005).Google Scholar

  • [11]

    P.-M. König, R. Roth, K. Mecke. Phys. Rev. Lett. 93, 160601 (2004).PubMedGoogle Scholar

  • [12]

    H. Hansen-Goos, R. Roth, K. Mecke, S. Dietrich. Phys. Rev. Lett. 99, 128101 (2007).Google Scholar

  • [13]

    Y. Snir, R. D. Kamien. Science 307, 1067 (2005).Google Scholar

  • [14]

    R. Roth, Y. Harano, M. Kinoshita. Phys. Rev. Lett. 97, 078101 (2006).PubMedGoogle Scholar

  • [15]

    M. O’Keeffe, J. Plevert, Y. Teshima, Y. Watanabe, T. Ogama. Acta Crystallogr., A 57, 110 (2001).Google Scholar

  • [16]

    M. E. Evans, V. Robins, S. Hyde. Acta Crystallogr., A 69, 262 (2013).Google Scholar

  • [17]

    M. E. Evans, S. T. Hyde. J. R. Soc. Interface 8, 1274 (2011).Google Scholar

  • [18]

    M. E. Evans, V. Robins, S. Hyde. Acta Crystallogr., A 69, 241 (2013).Google Scholar

  • [19]

    R. Evans. Adv. Phys. 28, 143 (1979).Google Scholar

  • [20]

    R. Roth, D. Gillespie, W. Nonner, R. E. Eisenberg. Biophys. J. 94, 4282 (2008).PubMedGoogle Scholar

  • [21]

    G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller, M. J. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reicheldorfer, W. Peukert, W. Schwieger, K. Mecke. Adv. Mater. 23, 2535 (2011).Google Scholar

  • [22]

    G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug, K. Mecke. New J. Phys. 15, 083028 (2013).Google Scholar

  • [23]

    R. Evans, U. M. B. Marconi. J. Chem. Phys. 84, 2376 (1985).Google Scholar

  • [24]

    M. E. Evans, R. Roth. Phys. Rev. Lett. 112, 038102 (2014).Google Scholar

  • [25]

    J. J. K. Kirkensgaard, M. E. Evans, L. de Campo, S. T. Hyde. Proc. Natl. Acad. Sci. USA (2013). Accepted for publication. Doi: 10.1073/pnas.1316348111.CrossrefGoogle Scholar

  • [26]

    G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. Fitz-Gerald, L. Poladian, M. C. Large, S. T. Hyde. J. Struct. Biol. 174, 290 (2011).Google Scholar

  • [27]

    S. J. Ramsden, V. Robins, S. T. Hyde. Acta Crystallogr. 39, 365 (2009).Google Scholar

  • [28]

    T. Castle, M. E. Evans, S. T. Hyde, S. J. Ramsden, V. Robins. Interface Focus 2, 555 (2012).PubMedGoogle Scholar

About the article

Corresponding author: Myfanwy E. Evans, Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Germany, e-mail:

Published Online: 2014-02-05

Published in Print: 2014-02-01

Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2014-5027.

Export Citation

©2014 IUPAC & De Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in