Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 86, Issue 4

Issues

Geometric measures of finite carbon nanotube molecules: a proposal for length index and filling indexes

Taisuke Matsuno
  • Department of Chemistry, Advanced Institute for Materials Research (WPI-AIMR) and ERATO Isobe Degenerate π-Integration Project, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hisashi Naito / Shunpei Hitosugi
  • Department of Chemistry, Advanced Institute for Materials Research (WPI-AIMR) and ERATO Isobe Degenerate π-Integration Project, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sota Sato
  • Department of Chemistry, Advanced Institute for Materials Research (WPI-AIMR) and ERATO Isobe Degenerate π-Integration Project, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Motoko Kotani
  • Mathematical Institute and Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Aoba-ku, Sendai 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiroyuki Isobe
  • Corresponding author
  • Department of Chemistry, Advanced Institute for Materials Research (WPI-AIMR) and ERATO Isobe Degenerate π-Integration Project, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-18 | DOI: https://doi.org/10.1515/pac-2014-5006

Abstract

The structural chemistry of carbon nanotube molecules has been of increasing interest, as molecular entities with fundamental structures of finite nanotube molecules have emerged. For the new field to be developed further, appropriate structural descriptors are necessary as the basis for discussion. In this paper, we propose new geometric descriptors for finite nanotube molecules. Based on popular existing descriptors, these new descriptors provide geometric measures for length and bond- and atom-filling in tubular molecular structures.

Keywords: atropisomerism; carbon nanotubes; ISNA-15; macrocycles; nomenclature; polycyclic aromatics; structure

Article note: A collection of invited papers based on presentations at the 15th International Symposium on Novel Aromatic Compounds (ISNA-15), Taipei, Taiwan, 28 July–2 August, 2013.

References and notes

  • [1]

    S. Iijima. Nature 354, 56 (1991).Google Scholar

  • [2]

    R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Appl. Phys. Lett. 60, 2204 (1992).Google Scholar

  • [3]

    R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).Google Scholar

  • [4]

    In the original proposal of Saito, Dresselhaus, and Dresselhaus, the “helical” type is referred to as the “chiral” type. However, SWNT molecules in other categories can also be “chiral”, as we demonstrated the presence of “chiral” and “zigzag” SWNT molecules in our examples (see ref. [13]). Considering these facts, we think it appropriate to describe (n,m)-SWNT as “helical” type (nm).Google Scholar

  • [5]

    Note that the terms chiral or chirality, which are used for SWNT description, are not consistent with the definition provided in the IUPAC terminologies.Google Scholar

  • [6]

    N. Komatsu. Jpn. J. Appl. Phys. 49, 02BC01 (2010).Google Scholar

  • [7]

    (a) R. S. Cahn, C. Ingold, V. Prelog. Angew. Chem., Int. Ed. Engl. 5, 385 (1966); (b) G. P. Moss. Pure Appl. Chem. 68, 2193 (1996).Google Scholar

  • [8]

    E. L. Eliel, S. H. Wilen, L. N. Mander. Stereochemistry of Organic Compounds, John Wiley, Hoboken (1994).Google Scholar

  • [9]

    IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://dx.doi.org/10.1351/goldbook (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins.Crossref

  • [10]

    J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. L. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley. Science 280, 1253 (1998).Google Scholar

  • [11]

    Only one example clarified the fundamental chemical composition (i.e., molecular weight) of SWNT agglomerates: H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura. Angew. Chem., Int. Ed. 45, 6676 (2006).CrossrefGoogle Scholar

  • [12]

    (a) S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe. Nat. Commun. 2, (2011). DOI: 10.1038/ncomms1505; (b) S. Hitosugi, W. Nakanishi, H. Isobe. Chem. Asian J. 7, 1550 (2012).CrossrefGoogle Scholar

  • [13]

    S. Hitosugi, T. Yamasaki, H. Isobe. J. Am. Chem. Soc. 134, 12442 (2012).Google Scholar

  • [14]

    T. Matsuno, S. Kamata, S. Hitosugi, H. Isobe. Chem. Sci. 4, 3179 (2013).Google Scholar

  • [15]

    L=an2+m2+nm;dt=(an2+m2+nm)/π.Google Scholar

  • [16]

    By defining d as the greatest common divisor of n and m, T can be expressed by the following equations: When nm is not a multiple of 3d, T=a3(n2+m2+nm)/d; when nm is a multiple of 3d, T=a3(n2+m2+nm)/3d.Google Scholar

  • [17]

    We used a nomenclature that is consistent with recent popular examples of [n]cyclo-para-phenylene.Google Scholar

  • [18]

    (a) W. S. Rapson, R. G. Shuttleworth, J. N. van Niekerk. J. Chem. Soc. 326 (1943); (b) L. Friedman, D. F. Lindow. J. Am. Chem. Soc. 90, 2324 (1968); (c) H. N. C. Wong, T. C. W. Mak. J. Chem. Soc., Chem. Commun. 543 (1982); (d) H. N. C. Wong, T. -Y. Luh, T. C. W. Mak. Acta Crystallogr., Sect. C 40, 1721 (1984).Google Scholar

  • [19]

    S. Kammermeier, P. G. Jones, R. Herges. Angew. Chem., Int. Ed. 35, 2669 (1996).Google Scholar

  • [20]

    E. Nakamura, K. Tahara, Y. Matsuo, M. Sawamura. J. Am. Chem. Soc. 125, 2834 (2003).Google Scholar

  • [21]

    (a) W. Nakanishi, T. Yoshioka, H. Taka, J. Y. Xue, H. Kita, H. Isobe. Angew. Chem., Int. Ed. 50, 5323 (2011); (b) W. Nakanishi, J. Y. Xue, T. Yoshioka, H. Isobe. Acta Crystallogr., Sect. E 67, o1762 (2011); (c) J. Y. Xue, W. Nakanishi, D. Tanimoto, D. Hara, Y. Nakamura, H. Isobe. Tetrahedron Lett. 54, 4963 (2013).Google Scholar

  • [22]

    (a) R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi. J. Am. Chem. Soc. 130, 17646 (2008); (b) T. J. Sisto, M. R. Golder, E. S. Hirst, R. Jasti. J. Am. Chem. Soc. 133, 15800 (2011); (c) J. Xia, R. Jasti. Angew. Chem., Int. Ed. 51, 2474 (2012); (d) T. J. Sisto, X. Tian, R. Jasti. J. Org. Chem. 77, 5857 (2012); (e) J. Xia, J. W. Bacon, R. Jasti. Chem. Sci. 3, 3018 (2012); (f) E. R. Darzi, T. J. Sisto, R. Jasti. J. Org. Chem. 77, 6624 (2012); (g) J. Xia, M. R. Golder, M. E. Foster, B. M. Wong, R. Jasti. J. Am. Chem Soc. 134, 19709 (2012).Google Scholar

  • [23]

    (a) H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami. Angew. Chem., Int. Ed. 48, 6112 (2009); (b) H. Omachi, S. Matsuura, Y. Segawa, K. Itami. Angew. Chem., Int. Ed. 49, 10202 (2010); (c) Y. Segawa, S. Miyamoto, H. Omachi, S. Matsuura, P. Šenel, T. Sasamori, N. Tokitoh, K. Itami. Angew. Chem., Int. Ed. 50, 3244 (2011); (d) Y. Segawa, P. Šenel, S. Matsuura, H. Omachi, K. Itami. Chem. Lett. 40, 423 (2011); (e) H. Omachi, Y. Segawa, K, Itami. Org. Lett. 13, 2480 (2011); (f) A. Yagi, Y. Segawa, K. Itami. J. Am. Chem. Soc. 134, 2962 (2012); (g) K. Matsui, Y. Segawa, K. Itami. Org. Lett. 14, 1888 (2012); (h) Y. Ishii, Y. Nakanishi, H. Omachi, S. Matsuura, K. Matsui, H. Shinohara, Y. Segawa, K. Itami. Chem. Sci. 3, 2340 (2012).Google Scholar

  • [24]

    (a) S. Yamago, Y. Watanabe, T. Iwamoto. Angew. Chem., Int. Ed. 49, 757 (2010); (b) T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago. J. Am. Chem. Soc. 133, 8354 (2011); (c) E. Kayahara, Y. Sakamoto, T. Suzuki, S. Yamago. Org. Lett. 14, 3284 (2012); (d) E. Kayahara, T. Iwamoto, T. Suzuki, S. Yamago. Chem. Lett. 42, 621 (2013).Google Scholar

  • [25]

    T. Nishiuchi, X. L. Feng, V. Enkelmann, M. Wagner, K. Müllen. Chem.—Eur. J. 18, 16621 (2012).Google Scholar

  • [26]

    Y. Segawa, H. Omachi, K. Itami. Org. Lett. 12, 2262 (2010).Google Scholar

About the article

Corresponding author: Hiroyuki Isobe, Department of Chemistry, Advanced Institute for Materials Research (WPI-AIMR) and ERATO Isobe Degenerate π-Integration Project, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, e-mail:


Published Online: 2014-01-18

Published in Print: 2014-04-17


Citation Information: Pure and Applied Chemistry, Volume 86, Issue 4, Pages 489–495, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2014-5006.

Export Citation

©2014 by IUPAC & De Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sota Sato, Asami Yoshii, Satsuki Takahashi, Seiichi Furumi, Masayuki Takeuchi, and Hiroyuki Isobe
Proceedings of the National Academy of Sciences, 2017, Page 201717524
[2]
Taisuke Matsuno, Sho Kamata, Sota Sato, Atsutoshi Yokoyama, Parantap Sarkar, and Hiroyuki Isobe
Angewandte Chemie, 2017
[3]
Taisuke Matsuno, Sho Kamata, Sota Sato, Atsutoshi Yokoyama, Parantap Sarkar, and Hiroyuki Isobe
Angewandte Chemie International Edition, 2017
[4]
Shunpei Hitosugi, Sota Sato, Taisuke Matsuno, Takashi Koretsune, Ryotaro Arita, and Hiroyuki Isobe
Angewandte Chemie International Edition, 2017, Volume 56, Number 31, Page 9106
[5]
Shunpei Hitosugi, Sota Sato, Taisuke Matsuno, Takashi Koretsune, Ryotaro Arita, and Hiroyuki Isobe
Angewandte Chemie, 2017, Volume 129, Number 31, Page 9234
[6]
Tomoo Izumi, Yi Tian, Koki Ikemoto, Asami Yoshii, Takashi Koretsune, Ryotaro Arita, Hiroshi Kita, Hideo Taka, Sota Sato, and Hiroyuki Isobe
Chemistry - An Asian Journal, 2017, Volume 12, Number 7, Page 730
[7]
Asami Yoshii, Koki Ikemoto, Tomoo Izumi, Hiroshi Kita, Hideo Taka, Takashi Koretsune, Ryotaro Arita, Sota Sato, and Hiroyuki Isobe
ECS Journal of Solid State Science and Technology, 2017, Volume 6, Number 6, Page M3065
[8]
Zhe Sun, Naoya Miyamoto, Sota Sato, Hidetoshi Tokuyama, and Hiroyuki Isobe
Chemistry - An Asian Journal, 2017, Volume 12, Number 2, Page 271
[9]
Taisuke Matsuno, Sota Sato, Atsutoshi Yokoyama, Sho Kamata, and Hiroyuki Isobe
Angewandte Chemie International Edition, 2016, Volume 55, Number 49, Page 15339
[10]
Taisuke Matsuno, Sota Sato, Atsutoshi Yokoyama, Sho Kamata, and Hiroyuki Isobe
Angewandte Chemie, 2016, Volume 128, Number 49, Page 15565
[11]
Parantap Sarkar, Zhe Sun, Toshiki Tokuhira, Motoko Kotani, Sota Sato, and Hiroyuki Isobe
ACS Central Science, 2016, Volume 2, Number 10, Page 740
[12]
Parantap Sarkar, Sota Sato, Sho Kamata, Taisuke Matsuno, and Hiroyuki Isobe
Chemistry Letters, 2015, Volume 44, Number 11, Page 1581
[13]
Koki Ikemoto, Sota Sato, and Hiroyuki Isobe
Chemistry Letters, 2016, Volume 45, Number 2, Page 217
[14]
Zhe Sun, Takuya Suenaga, Parantap Sarkar, Sota Sato, Motoko Kotani, and Hiroyuki Isobe
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 29, Page 8109
[15]
Jing Yang Xue, Koki Ikemoto, Sota Sato, and Hiroyuki Isobe
Chemistry Letters, 2016, Volume 45, Number 6, Page 676
[16]
Koki Ikemoto, Masahiro Fujita, Pei Chui Too, Ya Lin Tnay, Sota Sato, Shunsuke Chiba, and Hiroyuki Isobe
Chemistry Letters, 2016, Volume 45, Number 6, Page 658
[17]
Sota Sato, Atsushi Unemoto, Takuji Ikeda, Shin-ichi Orimo, and Hiroyuki Isobe
Small, 2016, Volume 12, Number 25, Page 3381
[18]
Hiroyuki Isobe, Kosuke Nakamura, Shunpei Hitosugi, Sota Sato, Hiroaki Tokoyama, Hideo Yamakado, Koichi Ohno, and Hirohiko Kono
Chem. Sci., 2015, Volume 6, Number 5, Page 2746
[19]
Jing Yang Xue, Tomoo Izumi, Asami Yoshii, Koki Ikemoto, Takashi Koretsune, Ryosuke Akashi, Ryotaro Arita, Hideo Taka, Hiroshi Kita, Sota Sato, and Hiroyuki Isobe
Chem. Sci., 2016, Volume 7, Number 2, Page 896
[20]
Zhe Sun, Parantap Sarkar, Takuya Suenaga, Sota Sato, and Hiroyuki Isobe
Angewandte Chemie International Edition, 2015, Volume 54, Number 43, Page 12800
[21]
Zhe Sun, Parantap Sarkar, Takuya Suenaga, Sota Sato, and Hiroyuki Isobe
Angewandte Chemie, 2015, Volume 127, Number 43, Page 12991
[22]
Shunpei Hitosugi, Kei Ohkubo, Yuki Kawashima, Taisuke Matsuno, Sho Kamata, Kosuke Nakamura, Hirohiko Kono, Sota Sato, Shunichi Fukuzumi, and Hiroyuki Isobe
Chemistry - An Asian Journal, 2015, Volume 10, Number 11, Page 2404
[23]
Simon E. Lewis
Chem. Soc. Rev., 2015, Volume 44, Number 8, Page 2221
[24]
Hideyuki Shimizu, José D. Cojal González, Masashi Hasegawa, Tohru Nishinaga, Tahmina Haque, Masayoshi Takase, Hiroyuki Otani, Jürgen P. Rabe, and Masahiko Iyoda
Journal of the American Chemical Society, 2015, Volume 137, Number 11, Page 3877
[25]
Taisuke Matsuno, Sota Sato, Ryosuke Iizuka, and Hiroyuki Isobe
Chem. Sci., 2015, Volume 6, Number 2, Page 909
[26]
Jing Yang Xue, Koki Ikemoto, Norihisa Takahashi, Tomoo Izumi, Hideo Taka, Hiroshi Kita, Sota Sato, and Hiroyuki Isobe
The Journal of Organic Chemistry, 2014, Volume 79, Number 20, Page 9735
[27]
Shunpei Hitosugi, Kei Ohkubo, Ryosuke Iizuka, Yuki Kawashima, Kosuke Nakamura, Sota Sato, Hirohiko Kono, Shunichi Fukuzumi, and Hiroyuki Isobe
Organic Letters, 2014, Volume 16, Number 12, Page 3352

Comments (0)

Please log in or register to comment.
Log in