[1]
S. Iijima. Nature354, 56 (1991).Google Scholar
[2]
R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Appl. Phys. Lett.60, 2204 (1992).CrossrefGoogle Scholar
[3]
R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).Google Scholar
[4]
In the original proposal of Saito, Dresselhaus, and Dresselhaus, the “helical” type is referred to as the “chiral” type. However, SWNT molecules in other categories can also be “chiral”, as we demonstrated the presence of “chiral” and “zigzag” SWNT molecules in our examples (see ref. [13]). Considering these facts, we think it appropriate to describe (n,m)-SWNT as “helical” type (n ≠ m).Google Scholar
[5]
Note that the terms chiral or chirality, which are used for SWNT description, are not consistent with the definition provided in the IUPAC terminologies.Google Scholar
[6]
N. Komatsu. Jpn. J. Appl. Phys. 49, 02BC01 (2010).Google Scholar
[7]
(a) R. S. Cahn, C. Ingold, V. Prelog. Angew. Chem., Int. Ed. Engl.5, 385 (1966); (b) G. P. Moss. Pure Appl. Chem. 68, 2193 (1996).CrossrefGoogle Scholar
[8]
E. L. Eliel, S. H. Wilen, L. N. Mander. Stereochemistry of Organic Compounds, John Wiley, Hoboken (1994).Google Scholar
[9]
IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://dx.doi.org/10.1351/goldbook (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins.Crossref
[10]
J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. L. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley. Science280, 1253 (1998).Google Scholar
[11]
Only one example clarified the fundamental chemical composition (i.e., molecular weight) of SWNT agglomerates: H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura. Angew. Chem., Int. Ed.45, 6676 (2006).Google Scholar
[12]
(a) S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe. Nat. Commun. 2, (2011). DOI: 10.1038/ncomms1505; (b) S. Hitosugi, W. Nakanishi, H. Isobe. Chem. Asian J.7, 1550 (2012).CrossrefGoogle Scholar
[13]
S. Hitosugi, T. Yamasaki, H. Isobe. J. Am. Chem. Soc.134, 12442 (2012).Google Scholar
[14]
T. Matsuno, S. Kamata, S. Hitosugi, H. Isobe. Chem. Sci.4, 3179 (2013).CrossrefGoogle Scholar
[15]
Google Scholar
[16]
By defining d as the greatest common divisor of n and m, T can be expressed by the following equations: When n–m is not a multiple of 3d, when n–m is a multiple of 3d, Google Scholar
[17]
We used a nomenclature that is consistent with recent popular examples of [n]cyclo-para-phenylene.Google Scholar
[18]
(a) W. S. Rapson, R. G. Shuttleworth, J. N. van Niekerk. J. Chem. Soc. 326 (1943); (b) L. Friedman, D. F. Lindow. J. Am. Chem. Soc.90, 2324 (1968); (c) H. N. C. Wong, T. C. W. Mak. J. Chem. Soc., Chem. Commun. 543 (1982); (d) H. N. C. Wong, T. -Y. Luh, T. C. W. Mak. Acta Crystallogr., Sect. C40, 1721 (1984).Google Scholar
[19]
S. Kammermeier, P. G. Jones, R. Herges. Angew. Chem., Int. Ed.35, 2669 (1996).Google Scholar
[20]
E. Nakamura, K. Tahara, Y. Matsuo, M. Sawamura. J. Am. Chem. Soc.125, 2834 (2003).Google Scholar
[21]
(a) W. Nakanishi, T. Yoshioka, H. Taka, J. Y. Xue, H. Kita, H. Isobe. Angew. Chem., Int. Ed.50, 5323 (2011); (b) W. Nakanishi, J. Y. Xue, T. Yoshioka, H. Isobe. Acta Crystallogr., Sect. E67, o1762 (2011); (c) J. Y. Xue, W. Nakanishi, D. Tanimoto, D. Hara, Y. Nakamura, H. Isobe. Tetrahedron Lett.54, 4963 (2013).Google Scholar
[22]
(a) R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi. J. Am. Chem. Soc. 130, 17646 (2008); (b) T. J. Sisto, M. R. Golder, E. S. Hirst, R. Jasti. J. Am. Chem. Soc.133, 15800 (2011); (c) J. Xia, R. Jasti. Angew. Chem., Int. Ed.51, 2474 (2012); (d) T. J. Sisto, X. Tian, R. Jasti. J. Org. Chem. 77, 5857 (2012); (e) J. Xia, J. W. Bacon, R. Jasti. Chem. Sci.3, 3018 (2012); (f) E. R. Darzi, T. J. Sisto, R. Jasti. J. Org. Chem. 77, 6624 (2012); (g) J. Xia, M. R. Golder, M. E. Foster, B. M. Wong, R. Jasti. J. Am. Chem Soc. 134, 19709 (2012).Google Scholar
[23]
(a) H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami. Angew. Chem., Int. Ed.48, 6112 (2009); (b) H. Omachi, S. Matsuura, Y. Segawa, K. Itami. Angew. Chem., Int. Ed. 49, 10202 (2010); (c) Y. Segawa, S. Miyamoto, H. Omachi, S. Matsuura, P. Šenel, T. Sasamori, N. Tokitoh, K. Itami. Angew. Chem., Int. Ed. 50, 3244 (2011); (d) Y. Segawa, P. Šenel, S. Matsuura, H. Omachi, K. Itami. Chem. Lett. 40, 423 (2011); (e) H. Omachi, Y. Segawa, K, Itami. Org. Lett. 13, 2480 (2011); (f) A. Yagi, Y. Segawa, K. Itami. J. Am. Chem. Soc. 134, 2962 (2012); (g) K. Matsui, Y. Segawa, K. Itami. Org. Lett. 14, 1888 (2012); (h) Y. Ishii, Y. Nakanishi, H. Omachi, S. Matsuura, K. Matsui, H. Shinohara, Y. Segawa, K. Itami. Chem. Sci. 3, 2340 (2012).Google Scholar
[24]
(a) S. Yamago, Y. Watanabe, T. Iwamoto. Angew. Chem., Int. Ed.49, 757 (2010); (b) T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago. J. Am. Chem. Soc. 133, 8354 (2011); (c) E. Kayahara, Y. Sakamoto, T. Suzuki, S. Yamago. Org. Lett. 14, 3284 (2012); (d) E. Kayahara, T. Iwamoto, T. Suzuki, S. Yamago. Chem. Lett. 42, 621 (2013).Google Scholar
[25]
T. Nishiuchi, X. L. Feng, V. Enkelmann, M. Wagner, K. Müllen. Chem.—Eur. J.18, 16621 (2012).CrossrefGoogle Scholar
[26]
Y. Segawa, H. Omachi, K. Itami. Org. Lett.12, 2262 (2010).Google Scholar
Comments (0)