Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

See all formats and pricing
More options …
Volume 86, Issue 7


Estimating the bioavailability of trace metals/metalloids and persistent organic substances in terrestrial environments: challenges and need for multidisciplinary approaches

Petr S. Fedotov
  • Corresponding author
  • Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia
  • National University of Science and Technology “MISIS”, 4 Leninsky Prospect, 119049 Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-20 | DOI: https://doi.org/10.1515/pac-2014-0203


Definitions and terms related to bioavailability and bioaccessibility of trace metals/metalloids and organic contaminants in soil are briefly discussed and critically evaluated. Main distinguishing features of estimating the bioavailability by biological (in vivo) methods are characterized. Assessment of bioaccessibility using biomimetric (in vitro) methods and existing correlations with in vivo tests are summarized. The most promising biomimetric methods can be as follows: CaCl2 extraction for the assessment of metals biouptake into plants; solid-phase micro extraction, supercritical fluid extraction (SFE) under mild conditions as well as Tenax and hydroxypropyl-beta-cyclodextrin (HPCD) extractions for the estimation of biouptake of persistent organic compounds (e.g., polynuclear aromatic hydrocarbons and polychlorinated biphenyls) by soil-dwelling organisms (mainly earthworms); SFE under mild conditions, HPCD and Tenax extraction for the prediction of biodegradability (microbial degradation) of organic contaminants. However, method development should be extended to further classes of substances. In addition, multidisciplinary approaches are needed for (i) standardization and round-robin studies of the most promising biomimetric methods and protocols so that the data obtained in different laboratories can be compared; (ii) further assessment and critical evaluation of correlations between in vitro and in vivo tests; application of chemometric techniques for handling sets of data obtained both by biomimetric and biological methods is of particular importance in order to evaluate new criteria for risk assessment.

Keywords: bioaccessibility; bioavailability; biomimetric (in vitro) methods; chemical activity; chemical extraction; in vivo tests; IUPAC Congress-44; environmental chemistry; metals; metalloids; organic pollutants; soil

Article note: A collection of invited papers based on presentations on the Environmental Chemistry theme at the 44th IUPAC Congress, Istanbul, Turkey, 11–16 August 2013.


  • [1]

    L. J. Ehlers, R. G. Luthy. Environ. Sci. Tech. 37, 295A (2003).Google Scholar

  • [2]

    U.S. Environmental Protection Agency (EPA). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.7–80. Washington, DC: U.S. EPA, Office of Solid Waste and Emergency Response (2007).Google Scholar

  • [3]

    International Organization for Standardization. Soil qualityVocabulary. ISO 11074. Geneva, Switzerland (2005).Google Scholar

  • [4]

    International Organization for Standardization. Soil quality. Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO 17402. Geneva, Switzerland (2011).Google Scholar

  • [5]

    M. Nordberg, D. M. Templeton, O. Andersen, J. H. Duffus. Pure Appl. Chem. 81, 829 (2009).Google Scholar

  • [6]

    F. Reichenberg, P. Mayer. Environ. Toxicol. Chem. 25, 1239 (2006).PubMedGoogle Scholar

  • [7]

    K. T. Semple, K. J. Doick, P. Burauel, A. Craven, H. Harms. Environ. Sci. Technol. 38, 228A (2004).Google Scholar

  • [8]

    P. S. Fedotov, W. Kördel, M. Miró, W. J. G. M. Peijnenburg, R. Wennrich, P. M. Huang. Crit. Rev. Environ. Sci. Tech. 42, 1117 (2012).Google Scholar

  • [9]

    International Organization for Standardization. Soil qualityAssessment of human exposure from ingestion of soil and soil materialGuidance on the application and selection of physiologically based extraction methods for the estimation of the human bioaccessibility/bioavailability of metals in soil. ISO/TS 17924. Geneva, Switzerland (2007).Google Scholar

  • [10]

    RECORD, Bioavailability and Bioaccessibility of Pollutants in Contaminated Soils: State of Present Knowledge and Research Avenues. 259 p, no. 10-0671/1A (2012).Google Scholar

  • [11]

    S. Denys, J. Caboche, C. Feidt, B. Hazebrouck, F. Dor, C. Dabin, A. Floch-Barneaud, K. Tack. Environ. Risq. Santé. 5, 433 (2009).Google Scholar

  • [12]

    R. H. Anderson, D. B. Farrar, J. M. Zodrow. Hum. Ecol. Risk Assess. 19, 1488 (2013).Google Scholar

  • [13]

    E. E. Codling, R. L. Chaney, K. G. Scheckel, M. H. Zia. Environ. Health Perspect. 159, 2320 (2011).Google Scholar

  • [14]

    U.S. Environmental Protection Agency (EPA). Estimation of Relative Bioavailability of Lead in Soil and Soil-like Materials Using in vivo and in vitro Methods. OSWER 9285.7–77. Washington, DC: US EPA, Office of Solid Waste and Emergency Response (2006).Google Scholar

  • [15]

    X. Cui, P. Mayer, J. Gan. Environ. Pollut. 172, 223 (2013).Google Scholar

  • [16]

    J. Wittsiepe, P. Fürst, P. Schrey, F. Lemm, M. Kraft, G. Eberwein, G. Winneke, M. Wilhelm. Chemosphere. 67, 286 (2007).Google Scholar

  • [17]

    R. A. Budinsky, J. C. Rowlands, S. Casteel, G. Fent, C. A. Cushing, J. Newsted, J. P. Giesy, M. V. Ruby, L. L. Aylward. Chemosphere. 70, 1774 (2008).PubMedGoogle Scholar

  • [18]

    M. Nordberg, J. H. Duffus, D. M. Templeton. Pure Appl. Chem. 82, 679 (2010).Google Scholar

  • [19]

    M. Maddaloni, N. Lolacono, W. Manton, C. Blum, J. Drexler, J. Graziano. Environ. Health Perspect. 106, 1589 (1998).PubMedGoogle Scholar

  • [20]

    K. G. Scheckel, R. L. Chaney, N. T. Basta, J. A. Ryan. Adv. Agron. 17, 409 (2010).Google Scholar

  • [21]

    Q.-E. Xie, X.-L. Yan, X.-Y. Liao, X. Li. Environ. Sci. Technol. 43, 8488 (2009).PubMedGoogle Scholar

  • [22]

    M. V. Ruby, A. Davls, T. E. Link, R. Schoof, R. L. Chancy, G. B. Freeman, P. Bergstromo. Environ. Sci. Technol. 27, 2870 (1993).Google Scholar

  • [23]

    K. D. Bradham, K. G. Scheckel, C. M. Nelson, P. E. Seales, G. E. Lee, M. F. Hughes, B. W. Miller, A. Yeow, T. Gilmore, S. M. Serda, S. Harper, D. J. Thomas. Environ Health Perspect. 119, 1629 (2011).PubMedGoogle Scholar

  • [24]

    A. L. Juhasz, N.T. Basta, E. Smith. Environ. Pollut. 180, 372 (2013).Google Scholar

  • [25]

    W. Peijnenburg, M. Zablotskaja, M. G. Vijver. Ecotoxicol. Environ. Safety. 67, 163 (2007).Google Scholar

  • [26]

    E. Remon, J. L. Bouchardon, M. Le Guedard, C. Conord, O. Faure. Environ. Pollut. 175, 1 (2013).Google Scholar

  • [27]

    C. A. M. van Gestel. Sci. Total Environ. 406, 385 (2008).Google Scholar

  • [28]

    R. H. Anderson, D. B. Farrar, J. M. Zodrow. Hum. Ecol. Risk Assess. 19, 1488 (2013).Google Scholar

  • [29]

    A. G. Oomen, A. Hack, M. Minekus, E. Zeijdner, C. Cornelis, G. Schoeters, W. Verstraete, T. Van de Wiele, J. Wragg, C. J. Rompelberg, A. J. Sips, J. H. Van Wijnen. Environ. Sci. Technol. 36, 3326 (2002).CrossrefGoogle Scholar

  • [30]

    I. Koch, K. J. Reimer, M. I. Bakker, N. T. Basta, M. R. Cave, S. Denys, M. Dodd, B. A. Hale, R. Irwin, Y.W. Lowney, M.M. Moore, V. Paquin, P.E. Rasmussen, G. L. Stephenson, S. D. Siciliano, J. Wragg, G. J.Zagury. J. Environ. Sci. Health Part A –Toxic/Hazard. Subst. Eviron. Eng. 48, 641 (2013).CrossrefGoogle Scholar

  • [31]

    S. Namiki, T. Otani, N. Seike. Soil Sci. Plant Nutr. 59, 669 (2013).Google Scholar

  • [32]

    J. R. Dean, R. L. Ma. Chemosphere. 68, 1399 (2007).PubMedGoogle Scholar

  • [33]

    M. V. Ruby, K. A. Fehling, D. J. Paustenbach, B. D. Landenberger, M. P. Holsapple. Environ. Sci. Technol. 36, 4905 (2002).PubMedGoogle Scholar

  • [34]

    Y.-X. Yu, Y.-P. Pang, C. Li, J.-L. Li, X.-Y. Zhang, Z.-Q. Yu, J.-L. Feng, M.-H. Wu, G.-Y. Sheng, J.-M. Fu. Environ. Intern. 42, 124 (2012).Google Scholar

  • [35]

    A. L. Juhasz, J. Weber, G. Stevenson, D. Slee, D. Gancarz, A. Rofe, E. Smith. Sci. Total Environ. 473–474, 147 (2014).Google Scholar

  • [36]

    E. Smith, J. Weber, A. Rofe, D. Gancarz, R. Naidu, A. L. Juhasz. Environ. Sci. Technol. 46, 2928 (2012).PubMedGoogle Scholar

About the article

Corresponding author: Petr S. Fedotov, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia; and National University of Science and Technology “MISIS”, 4 Leninsky Prospect, 119049 Moscow, Russia, e-mail:

Published Online: 2014-05-20

Published in Print: 2014-07-22

Citation Information: Pure and Applied Chemistry, Volume 86, Issue 7, Pages 1085–1095, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2014-0203.

Export Citation

©2014 IUPAC & De Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Petr S. Fedotov, Rustam Kh. Dzhenloda, Bayarma V. Dampilova, Svetlana G. Doroshkevich, and Vasily K. Karandashev
Environmental Chemistry Letters, 2018

Comments (0)

Please log in or register to comment.
Log in