Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 87, Issue 2 (Feb 2015)

Issues

Diaryl-substituted carboranes as inhibitors of hypoxia inducible factor-1 transcriptional activity

Hiroyuki Nakamura
  • Corresponding author
  • Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
  • Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lisa Tazaki
  • Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daisuke Kanoh
  • Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shinichi Sato
  • Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-04 | DOI: https://doi.org/10.1515/pac-2014-0911

Abstract

Diaryl-substituted carboranes, as a new class of HIF-1α inhibitors, were synthesized from the corresponding diaryl-substituted alkynes by decaborane coupling. The microwave-irradiated conditions with a combination of N,N-dimethylaniline and chlorobenzene were effective to obtain the diaryl-substituted carboranes in good to high yields. Among the compounds synthesized, compounds 1a and 1d showed significant inhibition of HIF-1 mediated transcriptional activity under hypoxia. Both compounds similarly suppressed hypoxia-induced HIF-1α accumulation in a concentration-dependent manner without affecting HIF-1α mRNA expression.

Keywords: cancer therapy; diaryl-substituted carboranes; hypoxia inducible factor-1 (HIF-1); IMEBORON XV

Article note

A collection of invited papers based on presentations at the 15th International Meeting on Boron Chemistry (IMEBORON-XV), Prague, Czech Republic, 24–28 August 2014.

References

  • [1]

    M. Brahimi-Horn, J. Chiche, J. Pouysségur. J. Mol. Med. 85, 1301 (2007).Google Scholar

  • [2]

    G. L. Semenza. J. Clin. Invest. 108, 39 (2001).Google Scholar

  • [3]

    G. L. Semenza. Nat. Rev. Cancer 3, 721 (2003).CrossrefGoogle Scholar

  • [4]

    P. Jaakkola, D. R. Mole, Y.-M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. v. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe. Science 292, 468 (2001).Google Scholar

  • [5]

    M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, W. G. Kaelin, Jr. Science 292, 464 (2001).Google Scholar

  • [6]

    P. H. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, P. J. Ratcliffe. Nature 399, 271 (1999).Google Scholar

  • [7]

    B.-H. Jiang, E. Rue, G. L. Wang, R. Roe, G. L. Semenza. J. Biol. Chem. 271, 17771 (1996).Google Scholar

  • [8]

    A. Dowlati, K. Robertson, M. Cooney, W. P. Petros, M. Stratford, J. Jesberger, N. Rafie, B. Overmoyer, V. Makkar, B. Stambler, A. Taylor, J. Waas, J. S. Lewin, K. R. McCrae, S. C. Remick. Cancer Res. 62, 3408 (2002).Google Scholar

  • [9]

    G. Dachs, A. Steele, C. Coralli, C. Kanthou, A. Brooks, S. Gunningham, M. Currie, A. Watson, B. Robinson, G. Tozer. BMC Cancer 6, 280 (2006).CrossrefGoogle Scholar

  • [10]

    V. I. Bregadze. Chem. Rev. 92, 209 (1992).Google Scholar

  • [11]

    A. F. Armstrong, J. F. Valliant. Dalton Trans. 4240 (2007).Google Scholar

  • [12]

    M. Scholz, E. Hey-Hawkins. Chem. Rev. 111, 7035 (2011).Google Scholar

  • [13]

    D.-H. Wu, C.-H. Wu, Y.-Z. Li, D.-D. Guo, X.-M. Wang, H. Yan. Dalton Trans. 285 (2009).Google Scholar

  • [14]

    G. Zhang, C. Wu, H. Ye, H. Yan, X. Wang. J. Nanobiotechnology 9, 6 (2011).CrossrefGoogle Scholar

  • [15]

    N. P. E. Barry, P. J. Sadler. Chem. Soc. Rev. 41, 3264 (2012).Google Scholar

  • [16]

    Y. Endo, T. Iijima, Y. Yamakoshi, H. Fukasawa, C. Miyaura, M. Inada, A. Kubo, A. Itai. Chem. Biol. 8, 341 (2001).CrossrefGoogle Scholar

  • [17]

    S. Fujii, H. Masuno, Y. Taoda, A. Kano, A. Wongmayura, M. Nakabayashi, N. Ito, M. Shimizu, E. Kawachi, T. Hirano, Y. Endo, A. Tanatani, H. Kagechika. J. Am. Chem. Soc. 133, 20933 (2011).Google Scholar

  • [18]

    H. S. Ban, K. Shimizu, H. Minegishi, H. Nakamura. J. Am. Chem. Soc. 132, 11870 (2010).Google Scholar

  • [19]

    H. S. Ban, H. Minegishi, K. Shimizu, M. Maruyama, Y. Yasui, H. Nakamura. ChemMedChem 5, 1236 (2010).CrossrefGoogle Scholar

  • [20]

    H. S. Ban, K. Shimizu, H. Minegishi, H. Nakamura. Pure Appl. Chem. 84, 13 (2012).Google Scholar

  • [21]

    H. Minegishi, T. Matsukawa, H. Nakamura. ChemMedChem 8, 265 (2013).CrossrefGoogle Scholar

  • [22]

    H. Nakamura, L. Tasaki, D. Kanoh, S. Sato, H. S. Ban. Dalton Trans. 43, 4941 (2014).Google Scholar

  • [23]

    N. J. Lawrence, F. A. Ghani, L. A. Hepworth, J. A. Hadfield, A. T. McGown, R. G. Pritchard. Synthesis 1999, 1656 (1999).Google Scholar

  • [24]

    W. E. Hill, F. A. Johnson, R. W. Novak. Inorg. Chem. 14, 1244 (1975).Google Scholar

  • [25]

    H. Minegishi, S. Fukashiro, H. S. Ban, H. Nakamura. ACS Med. Chem. Lett. 4, 297 (2013).CrossrefGoogle Scholar

  • [26]

    Y.-S. Chun, E.-J. Yeo, E. Choi, C.-M. Teng, J.-M. Bae, M.-S. Kim, J.-W. Park. Biochem. Pharmacol. 61, 947 (2001).Google Scholar

  • [27]

    A. Takeuchi, M. Hori, S. Sato, H. S. Ban, T. Kuchimaru, S. Kizaka-Kondoh, T. Yamori, H. Nakamura. MedChemComm 3, 1455 (2012).CrossrefGoogle Scholar

  • [28]

    F. Kotzyba-Hibert, I. Kapfer, M. Goeldner. Angew. Chem., Int. Ed. Engl. 34, 1296 (1995).Google Scholar

  • [29]

    H. C. Kolb, M. G. Finn, K. B. Sharpless. Angew. Chem. Int. Ed. 40, 2004 (2001).CrossrefGoogle Scholar

  • [30]

    V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless. Angew. Chem. Int. Ed. 41, 2596 (2002).CrossrefGoogle Scholar

  • [31]

    N. J. Lawrence, F. A. Ghani, L. A. Hepworth, J. A. Hadfield, A. T. McGown, R. G. Pritchard. Synthesis 1656 (1999).Google Scholar

About the article

Corresponding author: Hiroyuki Nakamura, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan, e-mail: ; and Faculty of Science, Department of Chemistry, Gakushuin University, Mejiro, Tokyo 171-8588, Japan


Published Online: 2015-02-04

Published in Print: 2015-02-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2014-0911.

Export Citation

©2014 IUPAC & De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hirofumi Naito, Kenta Nishino, Yasuhiro Morisaki, Kazuo Tanaka, and Yoshiki Chujo
Angewandte Chemie International Edition, 2017, Volume 56, Number 1, Page 254
[2]
Hirofumi Naito, Kenta Nishino, Yasuhiro Morisaki, Kazuo Tanaka, and Yoshiki Chujo
Angewandte Chemie, 2017, Volume 129, Number 1, Page 260
[3]
Kenta Nishino, Kazushi Hashimoto, Kazuo Tanaka, Yasuhiro Morisaki, and Yoshiki Chujo
Tetrahedron Letters, 2016, Volume 57, Number 19, Page 2025
[4]
Hiroyuki Nakamura, Lisa Tazaki, Daisuke Kanoh, and Shinichi Sato
ChemInform, 2015, Volume 46, Number 24, Page no

Comments (0)

Please log in or register to comment.
Log in