Jump to ContentJump to Main Navigation
Show Summary Details

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR increased in 2015: 2.615
5-year IMPACT FACTOR: 3.127
Rank 60 out of 163 in category Chemistry, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.012
Source Normalized Impact per Paper (SNIP) 2014: 1.187
Impact per Publication (IPP) 2014: 2.785

Online
ISSN
1365-3075
See all formats and pricing
Volume 87, Issue 3 (Mar 2015)

Issues

Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: bi-electronic tetrameric mixed-valence species

Boris Tsukerblat
  • Corresponding author
  • Ben-Gurion University of the Negev, Beer-Sheva, Israel
  • Email:
/ Andrew Palii
  • Institute of Applied Physics, Academy of Sciences of Moldova, Kishinev, Moldova
/ Juan Modesto Clemente-Juan
  • Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain
Published Online: 2014-12-20 | DOI: https://doi.org/10.1515/pac-2014-0904

Abstract

Our interest in this article is prompted by the problem of the vibronic self-trapping of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. We report the evaluation of the electronic states and the adiabatic potentials of mixed-valence (MV) systems in which two electrons (or holes) are shared among four sites. These systems are exemplified by the two kinds of tetra–ruthenium (2Ru(II)+ 2Ru(III)) clusters (assembled as two coupled Creutz–Taube dimers) for which molecular implementation of mQCA was proposed. The tetra–ruthenium clusters include two holes shared among four sites and correspondingly we employ the model which takes into account the electron transfer processes as well as the Coulomb repulsion in the different instant positions of localization. The vibronic self-trapping is considered within the conventional vibronic Piepho, Krausz and Schatz (PKS) model adapted to the bi-electronic MV species with the square topology. This leads to a complicated vibronic problems (21A1g + 1B1g + 1B2g + 1Eu) ⊗ (b1g + eu) and (3A2g + 3B1g + 23Eu) ⊗ (b1g + eu) for spin-singlet and spin-triplet states correspondingly. The adiabatic potentials are evaluated with account for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic localization in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and strength of the vibronic coupling.

Keywords: charge localization; mixed valency; molecular magnetism; molecular quantum cellular automata; polyoxometalates; SSC-2014; tetra–ruthenium complexes; vibronic trapping

Article note

Based on the presentation at the 11th Conference on Solid State Chemistry, July 6–11, 2014, Trencianske Teplice, Slovakia.

References

  • [1]

    C. S. Lent, P. Tougaw, W. Porod, G. Bernstein. Nanotechnology 4, 49 (1993).

  • [2]

    W. Porod, C. S. Lent, G. H. Bernstein, A. O. Orlov, I. Amlani, G. L. Snider, J. L. Merz. Int. J. Electron. 86, 549 (1999).

  • [3]

    P. D. Tougaw, C. S. Lent. J. Appl. Phys. 75, 1818 (1994).

  • [4]

    G. Toth, C. S. Lent. J. Appl. Phys. 85, 2977 (1999).

  • [5]

    G. Toth, C. S. Lent. Phys. Rev. A. 63, 1 (2000).

  • [6]

    C. S. Lent. Science 288, 1597 (2000).

  • [7]

    C. S. Lent, B. Isaksen, M. Lieberman. J. Am. Chem. Soc. 125, 1056 (2003).

  • [8]

    C. S. Lent, P. D. Tougaw. J. Appl. Phys. 74, 6227 (1993).

  • [9]

    C. S. Lent, P. Tougaw, W. Porod. Appl. Phys. Lett. 62, 714 (1993).

  • [10]

    C. S. Lent, P. D. Tougaw. Proc. IEEE 85, 541 (1997).

  • [11]

    C. S. Lent, B. Isaksen. IEEE Trans. Electron Devices 50, 1890 (2003). [Crossref]

  • [12]

    M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. Lent, G. H. Bernstein, G. Snider, F. C. Peiris. Ann. NY Acad. Sci. 960, 225 (2002).

  • [13]

    S. B. Braun-Sand, O. Wiest. J. Phys. Chem. A 107, 285 (2003).

  • [14]

    A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider. Science 277, 928 (1997).

  • [15]

    F. Yao, M.S. Zein-Sabatto, G. Shao, M. Bodruzzaman, M. Malkani. J. Nanotechnol. 1 (2014) doi.org/10.1155/2014/259869. [Crossref]

  • [16]

    M. R. Azghadi, O. Kavehei, K. Navi. J. Appl. Sci. 7, 3460 (2007).

  • [17]

    Z. Li, M. Lieberman, W. Hill. Langmuir 17, 4887 (2001). [Crossref]

  • [18]

    X. Wang, J. Ma. Phys. Chem. Chem. Phys. 13, 16134 (2011).

  • [19]

    B. Schneider, S. Demeshko, S. Neudeck, S. Dechert, F. Meyer. Inorg. Chem. 52, 13230 (2013).

  • [20]

    Y. Lu, C. S. Lent. Chem. Phys. Lett. 582, 86 (2013).

  • [21]

    Y. Lu, C. Lent. Phys. Chem. Chem. Phys. 13, 14928 (2011).

  • [22]

    J. Jiao, G. J. Long, L. Rebbouh, F. Grandjean, A. M. Beatty, T. P. Fehlner. J. Am. Chem. Soc. 127, 17819 (2005).

  • [23]

    R. C. Quardokus, Y. Lu, N. A. Wasio, C. S. Lent, F. Justaud, C. Lapinte, S.A. Kandel. J. Am. Chem. Soc. 134, 1710 (2012).

  • [24]

    E. Rahimi, S. M. Nejad. Nanoscale Res. Lett. 7, 274 (2012).

  • [25]

    H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, T. P. Fehlner. J. Am. Chem. Soc. 125, 15250 (2003).

  • [26]

    H. Qi, A. Gupta, B. C. Noll, G. L. Snider, Y. Lu, C. G. Lent, T. P. Fehlner. J. Am. Chem. Soc. 127, 15218 (2005).

  • [27]

    Z. Wei, S. Guo, S. A. Kandel. J. Phys. Chem. B 110, 21846 (2006).

  • [28]

    S. Guo, S. A. Kandel. J. Chem. Phys. 128, 014702 (2008).

  • [29]

    S. Guo, S. A. Kandel. J. Phys. Chem. Lett. 1, 420 (2010).

  • [30]

    N. A. Wasio, R. C. Quardokus, R. P. Forrest, S. A. Corcelli, Y. Lu, C. S. Lent, F. Justaud, C. Lapinte, S. A. Kandel. J. Phys. Chem. C 116, 25486 (2012).

  • [31]

    P. E. Blair, C.S. Lent. J. Appl. Phys. 113, 124302 (2013).

  • [32]

    X.-Q. Ding, E. L. Bominaar, E. Bill, H. Winkler, A. X. Trautwein, S. Drüeke, P. Chaudhuri, K. Weighardt. J. Chem. Phys. 92, 178 (1990).

  • [33]

    D. R. Gamelin, E. L. Bominaar, M. L. Kirk, K. Wieghardt, E. I. Solomon. J. Am. Chem. Soc. 118, 8085 (1996).

  • [34]

    A. J. Marks, K. Prassides. New. J. Chem. 17, 59 (1993).

  • [35]

    A. J. Marks, K. Prassides. J. Chem. Phys. 98 4805 (1993).

  • [36]

    E. L. Bominaar, S. A. Borshch, J. J. Girerd. J. Am. Chem. Soc. 116, 5362 (1994).

  • [37]

    J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat. Chem. Phys. 195, 1 (1995).

  • [38]

    J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat. Chem. Phys. 195, 17 (1995).

  • [39]

    J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat. Chem. Phys. 195, 29 (1995).

  • [40]

    J. M. Clemente-Juan, E. Coronado. Coord. Chem. Rev. 193–195, 361 (1999).

  • [41]

    D. Gatteschi, B. S. Tsukerblat. Mol. Phys. 79, 121 (1993).

  • [42]

    D. Gatteschi, B. S. Tsukerblat. Chem. Phys. 202, 25 (1996).

  • [43]

    P. Kögerler, B. Tsukerblat, A. Müller. Dalton Trans. 39, 21 (2010).

  • [44]

    J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño. Chem. Soc. Rev. 41, 7464 (2012).

  • [45]

    J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, A. V. Palii, B. S. Tsukerblat. “Magnetic properties of mixed-valence systems: theoretical approaches and applications”, in: Magnetoscience-From Molecules to Materials, J. Miller, M. Drillon, (Eds.), pp. 155–210. Willey-VCH, Weinheim, Germany (2001).

  • [46]

    J. J. Girerd, J. P. Launay. Chem. Phys. 74, 217 (1983).

  • [47]

    S. A. Borshch, I. N. Kotov. Chem. Phys. Lett. 187, 149 (1991).

  • [48]

    S. I. Boldyrev, F. G. Paladi. J. Nanoelectronics Optoelectronics 4, 89 (2009).

  • [49]

    K. Y. Wong, P. N. Schatz. Prog. Inorg. Chem. 28, 369 (1981).

  • [50]

    S. B. Piepho, E. R. Krausz, P. N. Shatz. J. Am. Chem. Soc. 100, 2996 (1978).

  • [51]

    B. S. Brunschwig, C. Creutz, N. Sutin. Chem. Soc. Rev. 31, 168 (2002).

  • [52]

    S. Zalis, B. Sarkar, C. Duboc, W. Kaim. Monatsh. Chem. 140, 765 (2009).

  • [53]

    B. Tsukerblat. Group Theory in Chemistry and Spectroscopy, Dover, Mineola, New York (2006).

  • [54]

    S. Sugano, Y. Tanabe, H. Kamimura. Multiplets of Transition-Metal Ions in Crystals, Academic Press, New York- London (1970).

  • [55]

    B. Tsukerblat, A. Palii, J. M. Clemente-Juan, E. Coronado. in Series: Progress in Theoretical Chemistry and Physics, Vol. 23: Vibronic Interactions and the Jahn-Teller Effect, pp. 38–57. Springer, Dordrecht- Heidelberg- London-New York (2011).

  • [56]

    B. Tsukerblat, A. Palii, J. M. Clemente-Juan, A. Gaita-Ariño, E. Coronado. Int. J. Quantum Chem. 112, 2957 (2012).

  • [57]

    J. M. Clemente-Juan, A. Palii, E. Coronado, B. Tsukerblat. Opt. Spectrosco. 116, 159 (2014).

  • [58]

    A. Palii, C. Bosch-Serrano, J. M. Clemente-Juan, E. Coronado, B. Tsukerblat. J. Chem. Phys. 139, 044304 (2013).

About the article

Corresponding author: Boris Tsukerblat, Ben-Gurion University of the Negev, Beer-Sheva, Israel, e-mail:


Published Online: 2014-12-20

Published in Print: 2015-03-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2014-0904. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Palii, B. Tsukerblat, J. M. Clemente-Juan, and S. M. Aldoshin
The Journal of Physical Chemistry A, 2015, Page 150909073907007

Comments (0)

Please log in or register to comment.
Log in