Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 10-11

Issues

Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood

Emily McHale
  • Corresponding author
  • Museum of Cultural History, University of Oslo, Post Box 6762 St. Olavs plass, 0130 Oslo, Norway
  • Department of Chemistry, University of Oslo, Post Box 1033 Blindern, 0315 Oslo, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susan Braovac
  • Museum of Cultural History, University of Oslo, Post Box 6762 St. Olavs plass, 0130 Oslo, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Calin C. Steindal
  • Museum of Cultural History, University of Oslo, Post Box 6762 St. Olavs plass, 0130 Oslo, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Richard B. Gillis
  • Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom of Great Britain and Northern Ireland
  • National Centre for Macromolecular Hydrodynamics, University of Nottingham, Loughborough, LE12 5RD, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gary G. Adams
  • Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom of Great Britain and Northern Ireland
  • National Centre for Macromolecular Hydrodynamics, University of Nottingham, Loughborough, LE12 5RD, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephen E. Harding
  • National Centre for Macromolecular Hydrodynamics, University of Nottingham, Loughborough, LE12 5RD, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tore Benneche / Hartmut Kutzke
  • Museum of Cultural History, University of Oslo, Post Box 6762 St. Olavs plass, 0130 Oslo, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-29 | DOI: https://doi.org/10.1515/pac-2016-0814

Abstract

The development of new materials for the consolidation of waterlogged archaeological wood from sustainable sources is an important area of research, as the most widely used consolidant today is petroleum based. Ideally a new consolidant will interact with the existing wood structure, ensuring maximum compatibility. Lignin is often the major component remaining in archaeological wood, as it is less susceptible to degradation than holocellulose. Therefore, in order to maximise the potential for interaction with the wood cells, lignin-like oligomers have been synthesized from isoeugenol using a water soluble copper salen catalyst at pH 10, giving a weight average Mw of 1.6 kDa. Analysis by NMR spectroscopy has shown that the oligomers have a lignin-like structure with β-O-4′, β-β′ and β-5′ connections. A 10 w/w% solution of the oligomers in ethyl acetate was found to thoroughly penetrate 1 cm3 samples of waterlogged archaeological wood (density of 0.146 g/mL, maximum water content of 620%) after 14 days impregnation, as determined by FTIR spectroscopy. No impregnation material could be seen by SEM, suggesting that it coats the cell walls upon drying. This indicates that dehydrogenated polymers penetrate waterlogged archaeological wood well and have the potential to be developed into consolidants.

Keywords: dehydrogenated polymers; lignin; lignin-like oligomers; POC-16; sustainable chemistry; waterlogged archaeological wood; wood conservation

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organic Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.

References

  • [1]

    B. Kaye. Chem. Soc. Rev. 24, 35 (1995).Google Scholar

  • [2]

    R. A. Blanchette. Int. Biodeterior.Biodegradation 46, 189 (2000).Google Scholar

  • [3]

    M. Florian. In Archaeological Wood, pp. 3–32. American Chemical Society, Washington (1989).Google Scholar

  • [4]

    D. M. Creangă. Eur. J. Sci. Theol. 5, 57 (2009).Google Scholar

  • [5]

    M. N. Mortensen, H. Egsgaard, S. Hvilsted, Y. Shashoua, J. Glastrup. J. Archaeol. Sci. 34, 1211 (2007).Google Scholar

  • [6]

    E. Hocker, G. Almkvist, M. Sahlstedt. J.Cult. Herit. 13, S175 (2012).Google Scholar

  • [7]

    J. H. Clark. Nat. Chem. 1, 12 (2009).Google Scholar

  • [8]

    Z. Walsh, E.-R. Janeček, M. Jones, O. A. Scherman. Stud. Conserv. 1–11 (2016).Google Scholar

  • [9]

    G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, V. Sparacino. Polym. Degrad. Stab. 120, 220 (2015).Google Scholar

  • [10]

    A. Kennedy, E. R. Pennington. Stud. Conserv. 59, 194 (2014).Google Scholar

  • [11]

    J. M. Parrent. Stud. Conserv. 30, 63 (1985).Google Scholar

  • [12]

    L. Babiński. J.Cult. Herit. 16, 876 (2015).Google Scholar

  • [13]

    T. K. Kirk. Nat. Biotech. 1, 666 (1983).Google Scholar

  • [14]

    J. J. Lindberg, T. A. Kuusela, K. Levon. In Lignin, pp. 190–204. American Chemical Society, Washington (1989).Google Scholar

  • [15]

    M. R. Roger, R. J. Barbour. Archaeological Wood. American Chemical Society, Washington (1989).Google Scholar

  • [16]

    E. Sjöström. Wood Chemistry Fundamentals and Applications. Academic Press Inc., California (1993).Google Scholar

  • [17]

    P. J. Deuss, K. Barta. Coord. Chem. Rev. 306, Part 2, 510 (2016).Google Scholar

  • [18]

    D. Fournand, B. Cathala, C. Lapierre. Phytochemistry 62, 139 (2003).Google Scholar

  • [19]

    N. Terashima, R. H. Atalla, S. A. Ralph, L. L. Landucci, C. Lapierre, B. Monties. In Holzforschung – International Journal of the Biology, Chemistry, Physics and Technology of Wood, p. 521 (1995).

  • [20]

    N. Terashima, R. H. Atalla, S. A. Ralph, L. L. Landucci, C. Lapierre, B. Monties. In Holzforschung International Journal of the Biology, Chemistry, Physics and Technology of Wood, p. 9 (1996).

  • [21]

    C. V. Horie. In Materials for Conservation, pp. 76–82. Butterworth-Heinemann (1987).

  • [22]

    A. Holmgren, M. Norgren, L. Zhang, G. Henriksson. Phytochemistry 70, 147 (2009).Google Scholar

  • [23]

    A. Salanti, M. Orlandi, E.-L. Tolppa, L. Zoia. Int. J. Mol. Sci. 11, 912 (2010).Google Scholar

  • [24]

    A. Haikarainen, J. Sipila, P. Pietikainen, A. Pajunen, I. Mutikainen. J. Chem. Soc. Dalton Trans. 7, 991 (2001).Google Scholar

  • [25]

    P. Schuck, R. B. Gillis, T. M. D. Besong, F. Almutairi, G. G. Adams, A. J. Rowe, S. E. Harding. Analyst 139, 79 (2014).Google Scholar

  • [26]

    J. M. Creeth, S. E. Harding. J. Biochem. Biophys. Methods 7, 25 (1982).Google Scholar

  • [27]

    E. Alzahrani Qushmua, G. Adams Gary, B. Gillis Richard, M. D. Besong Tabot, M. S. Kök, E. Fong, A. Harding Richard, E. G. van Dam Jan, J. A. Gosselink Richard, J. Rowe Arthur, E. Harding Stephen. In Holzforschung, p. 117 (2016).

  • [28]

    B. A. P. M. A. Rubio, P. Zuman. Dietary Fibres: Chemistry and Nutrition. Academic Press, New York (1979).Google Scholar

  • [29]

    Y. Xia, S. Moran, E. P. Nikonowicz, X. Gao. Magn. Reson. Chem. 46, 432 (2008).Google Scholar

  • [30]

    J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph, J. H. Christensen. Phytochem. Rev. 3, 29 (2004).Google Scholar

  • [31]

    J. Schwöbel, R.-U. Ebert, R. Kühne, G. Schüürmann. J. Chem. Inf. Model. 49, 956 (2009).Google Scholar

  • [32]

    M. P. Colombini, M. Orlandi, F. Modugno, E. L. Tolppa, M. Sardelli, L. Zoia, C. Crestini. Microchem. J. 85, 164 (2007).Google Scholar

  • [33]

    C. Crestini, N. M. N. El Hadidi, G. Palleschi. Microchem. J. 92, 150 (2009).Google Scholar

  • [34]

    G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg. Organometallics 29, 2176 (2010).Google Scholar

  • [35]

    O. Faix. Methods in Lignin Chemistry. Springer-Verlag Berlin Heidelberg, Germany (1992).Google Scholar

  • [36]

    S. Braovac, H. Kutzke. J. Cult. Herit. 13, S203 (2012).Google Scholar

About the article

Published Online: 2016-10-29

Published in Print: 2016-11-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 10-11, Pages 969–977, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0814.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Emily McHale, Calin C. Steindal, Hartmut Kutzke, Tore Benneche, and Stephen E. Harding
Scientific Reports, 2017, Volume 7, Page 46481

Comments (0)

Please log in or register to comment.
Log in