Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 12 (Dec 2016)

Issues

Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

Tyler B. CoplenORCID iD: http://orcid.org/0000-0003-4884-6008 / Yesha ShresthaORCID iD: http://orcid.org/0000-0002-9714-8516
Published Online: 2017-01-06 | DOI: https://doi.org/10.1515/pac-2016-0302

Abstract

There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

Keywords: atomic weights; boron, bromine; carbon; chlorine; hydrogen; isotopic abundances; lithium; magnesium; nitrogen; oxygen; silicon; sulfur; thallium

Article note:

Sponsoring body: IUPAC Inorganic Chemistry Division Committee: see more details on page 1219. This article is a U.S. Government work and is in the public domain in the USA.

1 Introduction

Once in a while, a really big discovery is made in science, a discovery that affects all mankind. Such was the discovery of radioactivity by Becquerel [1] in 1896, which effected a paradigm shift in our view of matter. An outcome of this finding was that the spontaneous decay of atoms from one chemical element to another gives rise to the possibility that atoms of the same chemical element might have different atomic weights (also called relative atomic masses). In 1911, Soddy demonstrated that mesothorium 1 (228Ra) was chemically identical to radium [2], and he concluded that there were chemical elements having different atomic weights. Soddy coined the name “isotope” for these atoms of a chemical element having different atomic weights. Three years later, J. J. Thomson discovered that neon had isotopes with mass numbers 20 and 22 [3]. This discovery ushered in a new field in spectroscopy – the “spectroscopy of mass.”

The atomic weight of element E, Ar(E), in a material P is determined from the relation

Ar(E)P= [ x(iE)P×Ar(iE)](1)

where x(iE)P is the amount fraction of isotope iE in material P (also called the isotopic abundance or the mole fraction) and Ar(iE) is the relative atomic mass of isotope iE, where i is the mass number. The summation is over all stable isotopes of the element plus selected radioactive isotopes (having sufficiently long half-lives that characteristic terrestrial isotopic compositions can be determined, which enables a standard atomic weight to be determined) of the element. The atomic-mass values used to calculate the atomic-weight values given here derive from the 2012 Atomic Mass Evaluation [4].

In contrast to the atomic weight of an element in any given material, the standard atomic weight is a quantity that represents the atomic weight of an element in any normal material. By a normal material, the Commission on Isotopic Abundances and Atomic Weights means a material from a terrestrial source that satisfies the following criteria [5]:

“The material is a reasonably possible source for this element or its compounds in commerce, for industry or science; the material is not itself studied for some extraordinary anomaly and its isotopic composition has not been modified significantly in a geologically brief period.”

Because of variations in isotopic abundances in various sources of some chemical elements, the standard atomic weight must be given with larger uncertainty for these elements than the measured atomic weight in any given sample of that element.

The identification of variations in abundances of stable isotopes and their effect on atomic weights was recognized at the September 1951 meeting of the Commission on Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) and an atomic-weight “range” was assigned to an element – 32.066±0.003 to sulfur [6]. By 1967, recognized variations in isotopic abundances caused the Commission to assign atomic-weight uncertainties to six elements (hydrogen, boron, carbon, oxygen, silicon, and sulfur) [7].

During the meeting of the Commission on Atomic Weights and Isotopic Abundances at the General Assembly of IUPAC in 1985 in Lyon, France, the Working Party on Natural Isotopic Fractionation (subsequently named the Subcommittee on Natural Isotopic Fractionation) was formed to investigate the effects of isotope-abundance variations of elements upon their standard atomic weights and atomic-weight uncertainties [8], [9]. The aims of the Subcommittee were to (1) identify elements for which the uncertainties of the standard atomic weights are larger than measurement uncertainties in materials of natural terrestrial origin because of isotope-abundance variations caused by physical and chemical fractionation processes (excluding variations caused by radioactivity), and (2) provide information about the range of atomic-weight variations in specific substances and chemical compounds of each of these elements. The Subcommittee’s reports [8], [9] compiled ranges of isotope-abundance variations and corresponding atomic weights in selected materials from peer-reviewed publications for twenty chemical elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, calcium, chromium, iron, copper, zinc, molybdenum, palladium, tellurium, and thallium). Graphical plots were presented for 15 elements [8], [9]. Atomic weights calculated from published variations in isotopic abundances for some elements can span relatively large intervals. For example, the atomic weight of hydrogen in normal materials (its standard atomic weight) spans the interval from 1.007 84 to 1.008 11 [8], [9], [10], whereas the uncertainty of the atomic weight calculated from the best measurement of the isotopic abundance of hydrogen is ±0.000 000 05 [11], [12], which is approximately 5000 times smaller than the difference between the lower and higher bounds. The Subcommittee’s reports formed the basis of the Commission’s decision in 2009 to express the standard atomic weight of ten elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, and thallium) as intervals to indicate that standard atomic weights are not always constants of nature [13], [14]. In 2011, the Commission decided to express the standard atomic weights of two more elements (magnesium and bromine) as intervals [15].

The span of atomic-weight values in normal terrestrial materials is termed the interval. The interval [a, b] is the set of values x for which axb, where b>a and where a and b are the lower and upper bounds, respectively [16]. Neither the lower nor upper bounds have any uncertainty associated with them; each is a considered decision by the Commission based on professional evaluation and judgment. Writing the standard atomic weight of hydrogen as “[1.007 84, 1.008 11]” indicates that its atomic weight in any normal material will be greater than or equal to 1.007 84 and will be less than or equal to 1.008 11. Thus, the atomic-weight interval is said to encompass atomic-weight values of all normal materials. The range of an interval is the difference between b and a, that is ba [16]; thus, the range of the atomic-weight interval of hydrogen is calculated as 1.008 11–1.007 84=0.000 27. The interval designation does not imply any statistical distribution of atomic-weight values between the lower and upper bounds (e.g. the mean of a and b is not necessarily the most likely value) [13]). Similarly, the interval does not convey a simple statistical representation of uncertainty.

The lower bound of an atomic-weight interval is determined from the lowest atomic weight determined by the Commission’s review and evaluation of peer-reviewed literature, and this evaluation takes into account the uncertainty of the measurement result as well as the variation in isotopic abundance of natural materials. Commonly, isotope-delta measurements [17], [18], [19], [20] are the basis for the determination of the lower and upper atomic-weight bounds [8], [9]. The isotope delta is obtained from isotope-number ratio R(iE, jE)P

R(iE, jE)P=N(iE)PN(jE)P(2)

where N(iE)P and N(jE)P are the numbers of each isotope, and iE denotes the higher (superscript i) and jE the lower (superscript j) atomic mass number of chemical element E in substance P. The isotope-delta value (symbol δ), also called the relative isotope-ratio difference, is a differential measurement obtained from isotope-number ratios of substance P and a reference material, Ref.

δ(iE, jE)P,Ref=R(iE, jE)PR(iE, jE)RefR(iE, jE)Ref(3)

A more convenient short-hand notation for the isotope-delta value is typically found in scientific publications; δ(iE, jE)P,Ref is shortened to δiERef or to δiE. For example, δ(13C, 12C)P,VPDB is shortened to either δ13CVPDB or δ13C [17], [20], where VPDB is the Vienna Peedee belemnite–LSVEC scale for carbon isotope-delta measurements [21]. Isotope-delta values are small numbers and therefore frequently presented in multiples of 10−3 or per mil (symbol ‰).

To match an isotope-delta scale of an element to an isotope-amount scale (both shown in Figs. 112), a substance is needed whose isotopic abundance is well known and whose isotope-delta value is also well known relative to the isotope-delta scale. Commonly this substance is an isotopic reference material that has served as the “best measurement” for determination of isotopic abundance [10]. For example, consider hydrogen, shown in Fig. 1. The x(2H) scale is matched to the δ2HVSMOW scale through measurement of the isotopic reference material VSMOW (Vienna Standard Mean Ocean Water) (Fig. 1), which has been assigned the consensus δ2HVSMOW value of zero [22]. The hydrogen isotope-number ratio of VSMOW, R(2H, 1H), has been measured by Hagemann et al. [12] and is 0.000 155 74(5). This measurement serves as the “best measurement” of a single terrestrial source [11]. VSMOW is the zero point on the hydrogen isotope-delta scale and therefore δ2HVSMOW=0. Figure 1 and Table 1 shows δ2HVSMOW values for 19 materials or substances. The material having the lowest measured 2H abundance is a natural gas sample from Kansas, USA (Fig. 1) [63], which has a δ2HVSMOW value of –836‰. For this sample, the amount fraction of 2H, x(2H), is 0.000 0255, and Ar(H) is 1.007 8507. The material having the highest measured 2H abundance is benzaldehyde reagent produced by toluene catalytic oxidation (Fig. 1) [10], which has a δ2HVSMOW value of +802‰. For this sample, the amount fraction of 2H, x(2H), is 0.000 2806, and Ar(H) is 1.008 1074. If material P is the normal material having the lowest atomic weight of element E, then

lower bound of atomic weight=lowest Ar(E)PU[Ar(E)]P(4)

Variation in isotopic composition and atomic weight of selected hydrogen-bearing materials (modified from [9], [13]). VSMOW is the Vienna Standard Mean Ocean Water–Standard Light Antarctic Precipitation scale [22]. Isotopic reference materials are designated by solid black circles. The δ2H scale and the 2H amount-fraction scale were matched using the data of Hagemann et al. [12]. The expanded uncertainty in matching the atomic-weight and 2H amount-fraction scales with the δ2H scale is equivalent to 0.3‰.
Fig. 1:

Variation in isotopic composition and atomic weight of selected hydrogen-bearing materials (modified from [9], [13]). VSMOW is the Vienna Standard Mean Ocean Water–Standard Light Antarctic Precipitation scale [22]. Isotopic reference materials are designated by solid black circles. The δ2H scale and the 2H amount-fraction scale were matched using the data of Hagemann et al. [12]. The expanded uncertainty in matching the atomic-weight and 2H amount-fraction scales with the δ2H scale is equivalent to 0.3‰.

Variation in isotopic composition and atomic weight of selected lithium-bearing materials (modified from [9], [13]). LSVEC is a lithium carbonate isotopic reference material [8]. Isotopic reference materials are designated by solid black circles. The δ7Li scale and the 7Li amount-fraction scale were matched using the data of Qi et al. [23]. The expanded uncertainty in matching the atomic-weight and 7Li amount-fraction scales with the δ7Li scale is equivalent to 3‰.
Fig. 2:

Variation in isotopic composition and atomic weight of selected lithium-bearing materials (modified from [9], [13]). LSVEC is a lithium carbonate isotopic reference material [8]. Isotopic reference materials are designated by solid black circles. The δ7Li scale and the 7Li amount-fraction scale were matched using the data of Qi et al. [23]. The expanded uncertainty in matching the atomic-weight and 7Li amount-fraction scales with the δ7Li scale is equivalent to 3‰.

Variation in isotopic composition and atomic weight of selected boron-bearing materials (modified from [9], [13]). SRM 951 is a boric acid isotopic reference material [8]. Isotopic reference materials are designated by solid black circles. The δ11B scale and 11B amount-fraction scale were matched using the data of Catanzaro et al. [24]. The expanded uncertainty in matching the atomic-weight and 11B amount-fraction scales with the δ11B scale is equivalent to 0.8‰.
Fig. 3:

Variation in isotopic composition and atomic weight of selected boron-bearing materials (modified from [9], [13]). SRM 951 is a boric acid isotopic reference material [8]. Isotopic reference materials are designated by solid black circles. The δ11B scale and 11B amount-fraction scale were matched using the data of Catanzaro et al. [24]. The expanded uncertainty in matching the atomic-weight and 11B amount-fraction scales with the δ11B scale is equivalent to 0.8‰.

Variation in isotopic composition and atomic weight of selected carbon-bearing materials (modified from [9], [13]). VPDB is the Vienna Peedee belemnite–LSVEC isotope scale [19] Isotopic reference materials are designated by solid black circles. The δ13C scale and 13C amount-fraction scale were matched using the data of Chang and Li [25] The expanded uncertainty in matching the atomic-weight and 13C amount-fraction scales with the δ13C scale is equivalent to 2.5‰.
Fig. 4:

Variation in isotopic composition and atomic weight of selected carbon-bearing materials (modified from [9], [13]). VPDB is the Vienna Peedee belemnite–LSVEC isotope scale [19] Isotopic reference materials are designated by solid black circles. The δ13C scale and 13C amount-fraction scale were matched using the data of Chang and Li [25] The expanded uncertainty in matching the atomic-weight and 13C amount-fraction scales with the δ13C scale is equivalent to 2.5‰.

Variation in isotopic composition and atomic weight of selected nitrogen-bearing materials (modified from [9], [13]). Isotopic reference materials are designated by solid black circles. The δ15NAir-N2 scale and 15N amount-fraction scale were matched using the data of Junk and Svec [26]. The expanded uncertainty in the atomic-weight and 15N amount-fraction scales with the δ15NAir-N2 scale is equivalent to 1.1‰. The δ15NAir-N2 value of –150‰ for NOx from a nitric acid plant is for a commercially available material that has been subjected to inadvertent isotopic fractionation [8] (see footnote m of the Table of Standard Atomic Weights 2011 [15]); thus, it is not included in the atomic-weight interval.
Fig. 5:

Variation in isotopic composition and atomic weight of selected nitrogen-bearing materials (modified from [9], [13]). Isotopic reference materials are designated by solid black circles. The δ15NAir-N2 scale and 15N amount-fraction scale were matched using the data of Junk and Svec [26]. The expanded uncertainty in the atomic-weight and 15N amount-fraction scales with the δ15NAir-N2 scale is equivalent to 1.1‰. The δ15NAir-N2 value of –150‰ for NOx from a nitric acid plant is for a commercially available material that has been subjected to inadvertent isotopic fractionation [8] (see footnote m of the Table of Standard Atomic Weights 2011 [15]); thus, it is not included in the atomic-weight interval.

Variation in isotopic composition and atomic weight composition of selected oxygen-bearing materials (modified from [9], [13]). VSMOW is the Vienna Standard Mean Ocean Water–Standard Light Antarctic Precipitation scale [22] and VPDB is the Vienna Peedee belemnite–LSVEC isotope scale [21]. Isotopic reference materials are designated by solid black circles. The δ18OVSMOW scale and 18O amount-fraction scale were matched using the data of Li et al. [27] and Baertschi [28]. The expanded uncertainty in the atomic-weight and 18O amount-fraction scales with the δ18O scale is equivalent to 0.3‰. The δ18OVSMOW value of –229‰ for CO tank gas is for a commercially available material that has been subjected to inadvertent isotopic fractionation [8] (footnote m of the Table of Standard Atomic Weights 2011 [15]); thus, it is not included in the atomic-weight interval.
Fig. 6:

Variation in isotopic composition and atomic weight composition of selected oxygen-bearing materials (modified from [9], [13]). VSMOW is the Vienna Standard Mean Ocean Water–Standard Light Antarctic Precipitation scale [22] and VPDB is the Vienna Peedee belemnite–LSVEC isotope scale [21]. Isotopic reference materials are designated by solid black circles. The δ18OVSMOW scale and 18O amount-fraction scale were matched using the data of Li et al. [27] and Baertschi [28]. The expanded uncertainty in the atomic-weight and 18O amount-fraction scales with the δ18O scale is equivalent to 0.3‰. The δ18OVSMOW value of –229‰ for CO tank gas is for a commercially available material that has been subjected to inadvertent isotopic fractionation [8] (footnote m of the Table of Standard Atomic Weights 2011 [15]); thus, it is not included in the atomic-weight interval.

Variation in isotopic composition and atomic weight of magnesium in selected magnesium-bearing materials (modified from [9], [15]. The δ26/24Mg measurements are expressed relative to the reference material DSM3 because many materials were measured relative to it [29]. However, DSM3 is not recommended as the international measurement standard for the δ26/24Mg scale because the supply is exhausted. The δ26/24Mg scale and 26Mg amount-fraction scales were matched using data from [29]. The expanded uncertainty in matching the atomic-weight and 26Mg amount-fraction scales with the δ26/24Mg scale is equivalent to 1.1‰.
Fig. 7:

Variation in isotopic composition and atomic weight of magnesium in selected magnesium-bearing materials (modified from [9], [15]. The δ26/24Mg measurements are expressed relative to the reference material DSM3 because many materials were measured relative to it [29]. However, DSM3 is not recommended as the international measurement standard for the δ26/24Mg scale because the supply is exhausted. The δ26/24Mg scale and 26Mg amount-fraction scales were matched using data from [29]. The expanded uncertainty in matching the atomic-weight and 26Mg amount-fraction scales with the δ26/24Mg scale is equivalent to 1.1‰.

Variation in isotopic composition and atomic weight of selected silicon-bearing materials (modified from [9], [13]). The isotopic reference material NBS 28 is optical quartz [8]. Isotopic reference materials are designated by solid black circles. IRMM-018 and NBS 28 have almost identical isotopic abundances and overlap. The δ30Si scale (or δ30/28Si scale, for specification with two isotopes) and 30Si amount-fraction scale were matched using the data of De Bièvre et al. [30] and a δ30Si value for IRMM-017 of –1.3‰ relative to NBS 28 [8]. The expanded uncertainty in the atomic-weight and 30Si amount-fraction scales with the δ30Si scale is equivalent to 0.23‰.
Fig. 8:

Variation in isotopic composition and atomic weight of selected silicon-bearing materials (modified from [9], [13]). The isotopic reference material NBS 28 is optical quartz [8]. Isotopic reference materials are designated by solid black circles. IRMM-018 and NBS 28 have almost identical isotopic abundances and overlap. The δ30Si scale (or δ30/28Si scale, for specification with two isotopes) and 30Si amount-fraction scale were matched using the data of De Bièvre et al. [30] and a δ30Si value for IRMM-017 of –1.3‰ relative to NBS 28 [8]. The expanded uncertainty in the atomic-weight and 30Si amount-fraction scales with the δ30Si scale is equivalent to 0.23‰.

Variation in isotopic composition and atomic weight of selected sulfur-bearing materials (modified from [9], [13]). VCDT is Vienna Cañon Diablo troilite [8]. Isotopic reference materials are designated by solid black circles. The δ34S scale (or δ34/32S scale, for completeness) and 34S amount-fraction scale were matched using the data of Ding et al. [31]. The expanded uncertainty in the atomic-weight and 34S amount-fraction scales with the δ34S scale is equivalent to 0.2‰.
Fig, 9:

Variation in isotopic composition and atomic weight of selected sulfur-bearing materials (modified from [9], [13]). VCDT is Vienna Cañon Diablo troilite [8]. Isotopic reference materials are designated by solid black circles. The δ34S scale (or δ34/32S scale, for completeness) and 34S amount-fraction scale were matched using the data of Ding et al. [31]. The expanded uncertainty in the atomic-weight and 34S amount-fraction scales with the δ34S scale is equivalent to 0.2‰.

Variation in isotopic composition and atomic weight of selected chlorine-bearing materials (modified from [9], [13]). SMOC is Standard Mean Ocean Chloride [8]. Isotopic reference materials are designated by solid black circles. The δ37Cl scale and the 37Cl amount-fraction scale were matched using the data of Shields et al. [32] and Xiao et al. [33]. The expanded uncertainty in the atomic-weight and 37Cl amount-fraction scales with the δ37Cl scale is equivalent to 2.5‰.
Fig. 10:

Variation in isotopic composition and atomic weight of selected chlorine-bearing materials (modified from [9], [13]). SMOC is Standard Mean Ocean Chloride [8]. Isotopic reference materials are designated by solid black circles. The δ37Cl scale and the 37Cl amount-fraction scale were matched using the data of Shields et al. [32] and Xiao et al. [33]. The expanded uncertainty in the atomic-weight and 37Cl amount-fraction scales with the δ37Cl scale is equivalent to 2.5‰.

Variation in isotopic composition and atomic weight of bromine in selected bromine-bearing materials (modified from [15]). SMOB is Standard Mean Ocean Bromide [20]. Isotopic reference materials are designated by solid black circles. The δ81Br scale and the 81Br amount-fraction scale were matched using data from [34], [35]. The expanded uncertainty in matching the atomic-weight and 81Br amount-fraction scales with the δ81Br scale is equivalent to 1.1‰.
Fig. 11:

Variation in isotopic composition and atomic weight of bromine in selected bromine-bearing materials (modified from [15]). SMOB is Standard Mean Ocean Bromide [20]. Isotopic reference materials are designated by solid black circles. The δ81Br scale and the 81Br amount-fraction scale were matched using data from [34], [35]. The expanded uncertainty in matching the atomic-weight and 81Br amount-fraction scales with the δ81Br scale is equivalent to 1.1‰.

Variation in atomic weight with isotopic composition of selected thallium-bearing materials (modified from [9], [13]). The reference material SRM 997 is elemental thallium metal [8]. An isotopic reference material is designated by a solid black circle. The δ205Tl scale and the 205Tl amount-fraction scale were matched using the data of Dunstan et al. [36] and Rosman and Taylor [37]. The expanded uncertainty in the atomic-weight and 205Tl amount-fraction scales with the δ205Tl scale is equivalent to 0.4‰.
Fig. 12:

Variation in atomic weight with isotopic composition of selected thallium-bearing materials (modified from [9], [13]). The reference material SRM 997 is elemental thallium metal [8]. An isotopic reference material is designated by a solid black circle. The δ205Tl scale and the 205Tl amount-fraction scale were matched using the data of Dunstan et al. [36] and Rosman and Taylor [37]. The expanded uncertainty in the atomic-weight and 205Tl amount-fraction scales with the δ205Tl scale is equivalent to 0.4‰.

Table 1:

Hydrogen isotopic compositions of selected hydrogen-bearing materials.

where U[Ar(E)]P is the combined uncertainty that incorporates the uncertainty in the measurement of the delta value of material P and the uncertainty in relating the delta-value scale to the isotope-amount fraction and atomic-weight scales. The latter is the uncertainty in relating an isotope-delta scale to an atomic-weight scale. In an equivalent manner, the upper bound for the highest atomic weight is

upper bound of atomic weight=highest Ar(E)PU[Ar(E)]P(5)

For each of the twelve elements having interval values of standard atomic weight, the Commission published a figure that displayed lower and upper bounds of isotope-delta values, isotopic abundances, and atomic weights in selected substances and materials (Figs. 112 [64]). The lower and upper bounds of the isotope-delta values of the selected substances and materials are compiled in Tables 112. A supplemental file [232] lists the atomic weight and the isotopic abundances for each isotope of each of the twelve elements for each substance and material shown in Figs. 112 and Tables 112. Many uses of atomic-weight data, such as for trade and commerce, need a value that is not an interval. For these purposes, the Commission provides conventional atomic-weight values [64], and the associated isotope-delta and isotope-amount-fraction values are listed in the supplemental file [232]. Additionally, the supplemental file lists the isotope-delta value and isotopic abundances of all stable isotopes corresponding to the lower and upper bounds of the standard atomic weights of the twelve elements discussed here. For the four elements with more than two stable isotopes, we assume mass-dependent isotopic fractionation when calculating isotopic abundances and atomic weights from isotope-delta values. For oxygen, R(17O, 16O)sample/R(17O, 16O)VSMOW=(R(18O, 16O)sample/R(18O, 16O)VSMOW)0.528, where the value 0.528 was determined by Meijer and Li [233]. For magnesium, R(25Mg, 24Mg)sample/R(25Mg, 24Mg)DSM3=(R(26Mg, 24Mg)sample/R(26Mg, 24Mg)DSM3)0.5; for silicon, R(29Si, 28Si)sample/R(29Si, 28Si)NBS28=(R(29Si, 28Si)sample/R(29Si, 28Si)NBS28)0.5; for sulfur, R(33S, 32S)sample/R(33S, 32S)NBS28=(R(34S, 32S)sample/R(34S, 32S)NBS28)0.5 and R(34S, 32S)sample/R(34S, 32S)NBS28= (R(36S, 32S)sample/R(36S, 32S)NBS28)0.5.

Table 2:

Lithium isotopic compositions of selected lithium-bearing materials.

Table 3:

Boron isotopic composition of selected boron-bearing materials.

Table 4:

Carbon isotopic composition of selected carbon-bearing materials.

Table 5:

Nitrogen isotopic composition of selected nitrogen-bearing materials.

Table 6:

Oxygen isotopic composition of selected oxygen-bearing materials.

Table 7:

Magnesium isotopic composition of selected magnesium-bearing materials.

Table 8:

Silicon isotopic composition of selected silicon-bearing materials.

Table 9:

Sulfur isotopic composition of selected sulfur-bearing materials.

Table 10:

Chlorine isotopic composition of selected chlorine-bearing materials.

Table 11:

Bromine isotopic composition of selected bromine-bearing materials.

Table 12:

Thallium isotopic composition of selected thallium-bearing materials.

2 Hydrogen

Table 1 lists δ2HVSMOW values of the extremes of hydrogen-bearing substances and materials shown in Fig. 1.

3 Lithium

Table 2 lists δ7LiLSVEC values of the extremes of lithium-bearing substances and materials shown in Fig. 2, where LSVEC is the lithium carbonate isotopic reference material whose δ7LiLSVEC value is zero by consensus [20].

4 Boron

Table 3 lists δ11BSRM951 values of the extremes of boron-bearing substances and materials shown in Fig. 3, where SRM 951 is the boric acid isotopic reference materials whose δ11BSRM951 value is zero by consensus [20].

5 Carbon

Table 4 lists δ13CVPDB values of the extremes of carbon-bearing substances and materials shown in Fig. 4, where VPDB signifies the Vienna Peedee belemnite scale by assigning a δ13CVPDB value of +1.95‰ to NBS 19 calcium carbonate by international consensus [124], [234].

6 Nitrogen

Table 5 lists δ15NAir-N2 values of the extremes of nitrogen-bearing substances and materials shown in Fig. 5, where the subscript Air-N2 signifies the isotopic reference material atmospheric nitrogen, which has a δ15NAir-N2 value of zero.

7 Oxygen

Table 6 lists δ18OVSMOW values of the extremes of oxygen-bearing substances and materials shown in Fig. 6.

8 Magnesium

Table 7 lists δ26/24MgDSM3 values of the extremes of magnesium-bearing substances and materials shown in Fig. 7 relative to the isotopic reference material DSM3 [20].

9 Silicon

Table 8 lists δ30SiNBS28 values of the extremes of silicon-bearing substances and materials shown in Fig. 8, where the subscript NBS28 signifies the isotopic reference material NBS 28 silica sand, which has a δ30SiNBS28 value of zero.

10 Sulfur

Table 9 lists δ34SVCDT values of the extremes of sulfur-bearing substances and materials shown in Fig. 9, where VCDT is Vienna Cañon Diablo troilite [8], which is assigned a δ34SVCDT value of zero.

11 Chlorine

Table 10 lists δ37ClSMOC values of the extremes of chlorine-bearing substances and materials shown in Fig. 10, where SMOC is Standard Mean Ocean Chloride [20].

12 Bromine

Table 11 lists δ81BrSMOB values of the extremes of bromine-bearing substances and materials shown in Fig. 11, where SMOB is Standard Mean Ocean Bromide [20].

13 Thallium

Table 12 lists δ205TlSRM997 values of the extremes of thallium-bearing substances and materials shown in Fig. 12, where the subscript SRM997 is the elemental thallium standard reference material SRM 997.

Membership of the sponsoring body

Membership of the IUPAC Inorganic Chemistry Division Committee for the period 2014–2015 was as follows:

President: J. Reedijk (Netherlands); Secretary: M. Leskelä (Finland); Vice President: L. R. Öhrström (Sweden); Past President: R. D. Loss; Titular Members: T. Ding (China); M. Drábik (Slovakia); E. Y. Tshuva (Israel); D. Rabinovich (USA); T. Walczyk (Republic of Singapore); M. E. Wieser (Canada); Associate Members: J. Buchweishaija (Tanzania); J. Garcia-Martinez (Spain); P. Karen (Norway); A. Kilic (Turkey); K. Sakai (Japan); R.-N. Vannier (France); National Representatives: F. Abdul Aziz (Malaysia); L. Armelao (Italy); A. Badshah (Pakistan); V. Chandrasekhar (India); J. Galamba Correia (Portugal); S. Kalmykov (Russia); L. Meesuk (Thailand); S. Mathur (Germany); B. Prugovecki (Croatia); N. Trendafilova (Bulgaria).

Membership of the IUPAC Commission on Isotopic Abundances and Atomic Weights for the period 2014–2015 was as follows:

Chair: J. Meija (Canada); Secretary: T. Prohaska (Austria); Titular Members: W. A. Brand (Germany); M. Gröning (Austria); R. Schönberg (Germany); X.-K. Zhu (China); Associate Members: T. Hirata (Japan); J. Irrgeher (Austria); J. Vogl (Germany); National Representatives: P. De Bièvre (Belgium); T. B. Coplen (USA); Ex-officio member: J. Reedijk (Netherlands).

Acknowledgments

We thank Dr. Juris Meija (National Research Council Canada, Ottawa, Canada) and Prof. B. Brynn Hibbert (University of New South Wales, Sydney, Australia) for their valuable suggestions that improved this manuscript. The support of the U.S. Geological Survey National Research Program made this report possible. The following IUPAC projects contributed to this Technical Report: 2011-040-2-200, 2015-030-2-200, and 2011-027-1-200.

References

  • [1]

    A. Becquerel. Comptes Rendus 9, 145 (1839). Google Scholar

  • [2]

    F. Soddy. J. Chem. Soc. Trans. 99, 72 (1911). Google Scholar

  • [3]

    J. Thomson. Phil. Mag. 24, 668 (1912). Google Scholar

  • [4]

    M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer. Chinese Phys C 36, 1603 (2012). Google Scholar

  • [5]

    H. S. Peiser, N. E. Holden, P. De Bièvre, I. L. Barnes, R. Hagemann, J. R. de Laeter, T. J. Murphy, E. Roth, M. Shima, H. G. Thode. Pure Appl. Chem. 56, 695 (1984). Google Scholar

  • [6]

    E. Wichers. J. Am. Chem. Soc. 74, 2447 (1952). Google Scholar

  • [7]

    “Atomic Weights of the Elements 1967”, Pure Appl. Chem. 18, 569 (1969). Google Scholar

  • [8]

    T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke, Jr., K. Révész, A. Lamberty, P. Taylor, P. De Bièvre. U.S. Geological Survey Water-Resources Investigations Report 01-4222 (2002). 

  • [9]

    T. B. Coplen, J. K. Böhlke, P. De Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. Révész, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke, Jr., Y. K. Xiao. Pure Appl. Chem. 74, 1987 (2002). Google Scholar

  • [10]

    M. Butzenlechner, A. Rossmann, H. L. Schmidt. J. Agric. Food. Chem. 37, 410 (1989). Google Scholar

  • [11]

    M. Berglund, M. E. Wieser. Pure Appl. Chem. 83, 397 (2011). Google Scholar

  • [12]

    R. Hagemann, G. Nief, E. Roth. Tellus 22, 712 (1970). Google Scholar

  • [13]

    M. E. Weiser, T. B. Coplen. Pure Appl. Chem. 83, 359 (2011). Google Scholar

  • [14]

    T. B. Coplen, N. Holden. Chem. Internal. 33, 10 (2011). Google Scholar

  • [15]

    M. E. Wieser, N. Holden, T. B. Coplen, J. K. Böhlke, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, R. D. Loss, J. Meija, T. Harata, T. Prohaska, R. Schoenberg, G. O’Conner, T. Walcyzk, S. Yoneda, X.-K. Zu. Pure Appl. Chem. 85, 1047 (2013). Google Scholar

  • [16]

    BIPM. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM), 3rd ed. Geneva (2008 version with corrections), Bureau International des Poids et Mesures. JCGM 200:2012 at http://www.bipm.org/en/publications/guides/vim

  • [17]

    T. B. Coplen. Rapid Commun. Mass Spectrom. 25, 2538 (2011). Google Scholar

  • [18]

    H. C. Urey. Science 108, 489 (1948). Google Scholar

  • [19]

    W. A. Brand, T. B. Coplen. Isotopes Environ. Health Stud. 48, 393 (2012). Google Scholar

  • [20]

    W. A. Brand, T. B. Coplen, J. Vogl, M. Rosner, T. Prohaska. Pure Appl. Chem. 86, 425 (2014). Google Scholar

  • [21]

    T. B. Coplen, W. A. Brand, M. Gehre, M. Gröning, H. A. Meijer, B. Toman, R. M. Verkouteren. Anal. Chem. 78, 2439 (2006). Google Scholar

  • [22]

    R. Gonfiantini. Nature 271, 534 (1978). Google Scholar

  • [23]

    H. P. Qi, P. D. P. Taylor, M. Berglund, P. De Bièvre. Int. J. Mass Spectrom. 171, 263 (1997). Google Scholar

  • [24]

    E. J. Catanzaro, C. E. Champion, E. L. Garner, G. Marinenko, K. M. Sappenfield, W. R. Shields. NBS Special Publication 260-17: U.S. Printing Office, Washington, D.C., 260, p. 11 (1970). Google Scholar

  • [25]

    T. L. Chang, W. J. Li. Chin. Sci. Bull. 35, 290 (1990). Google Scholar

  • [26]

    G. Junk, H. J. Svec. Geochim. Cosmochim. Acta 14, 234 (1958). Google Scholar

  • [27]

    W. J. Li, B. L. Ni, D. Q. Jin, T. L. Chang. Kexue Tongbao 33, 1610 (1988). Google Scholar

  • [28]

    P. Baertschi. Earth Planet. Sci. Lett. 31, 341 (1976). Google Scholar

  • [29]

    M. Bizzarro, C. Paton, K. Larsen, M. Schiller, A. Trinquier, D. Ulfbeck. J. Anal. At. Spectrom. 26, 565 (2011). Google Scholar

  • [30]

    P. De Bièvre, S. Valkiers, H. S. Peiser. J. Res. Natl. Inst. Stand. Technol. 99, 201 (1994). Google Scholar

  • [31]

    T. Ding, S. Valkiers, H. Kipphardt, P. De Bièvre, P. D. P. Taylor, R. Gonfiantini, H. R. Krouse. Geochim. Cosmochim. Acta 65, 2433 (2001). Google Scholar

  • [32]

    W. R. Shields, T. J. Murphy, E. L. Garner, V. H. Dibeler. J. Am. Chem. Soc. 84, 1519 (1962). Google Scholar

  • [33]

    Y. K. Xiao, Z. Yinming, W. Qingzhong, W. Haizhen, L. Weiguo, C. J. Eastoe. Chem. Geol. 182, 655 (2002). Google Scholar

  • [34]

    O. Shouakar-Stash, S. K. Frape, R. J. Drimmie. Anal. Chem. 77, 4027 (2005). Google Scholar

  • [35]

    E. Catanzaro, T. Murphy, E. Garner, W. Shields. J. Res. Natl. Bur. Std. 68A 593 (1964). Google Scholar

  • [36]

    L. Dunstan, J. Gramlich, I. Barnes, W. Purdy. J. Res. Natl. Bur. Stand. 85, 1 (1980). Google Scholar

  • [37]

    K. Rosman, P. Taylor. Pure Appl. Chem. 70, 217 (1998). Google Scholar

  • [38]

    A. C. Redfield, I. Friedman. Symposium on Marine Geochemistry: Univ. Rhode Island, Occasional Publication, 3, 149 (1965). Google Scholar

  • [39]

    J. Jouzel, C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, V. M. Petrov. Nature 329, 403 (1987). Google Scholar

  • [40]

    J.-C. Fontes, R. Gonfiantini. Earth Planet. Sci. Lett. 3, 258 (1967). Google Scholar

  • [41]

    J. Bricout, L. Merlivat, J. Ch. Fontes. Comptes Rendus 274, 1803 (1973). Google Scholar

  • [42]

    G. J. Martin, C. Guillou, M. L. Martin, M. T. Cabanis, Y. Tep, J. Aerny. J. Agric. Food. Chem. 36, 316 (1988). Google Scholar

  • [43]

    D. B. Wenner. Geochim. Cosmochim. Acta 43, 603 (1979). Google Scholar

  • [44]

    I. Friedman, J. R. O’Neil. In Handbook of Geochemistry II-1, K. H. Wedepohl (Ed.), p. 1B1, Section 1-B Isotopes in Nature, Springer-Verlag, Berlin, Germany (1978). Google Scholar

  • [45]

    C. M. Graham, S. M. F. Sheppard. Earth Planet. Sci. Lett. 49, 237 (1980). Google Scholar

  • [46]

    C. J. Yapp. “Climate change in continental isotopic records”, P.K. Swart et al. (Eds.), p. 285, Geophysical Monograph 78. American Geophysical Union, Washington, DC (1993). Google Scholar

  • [47]

    C. Bernard. Composition isotopique des minéraux secondaries des bauxites, Problèmes de genèse, Ph.D. Thesis. University of Paris, Paris (1978). Google Scholar

  • [48]

    M. I. Bird, A. R. Chivas, A. S. Andrew. Geochim. Cosmochim. Acta 53, 1411 (1989). Google Scholar

  • [49]

    H. Schütze, G. Strauch, K. Wetzel. In Stable Isotopes, Analytical Chemistry Symposia Series, Proceedings of the 4th International Conference, Jülich, H.-L. Schmidt et al. (Eds.), p. 121, Elsevier Scientific Publishing Co, Amsterdam, The Netherlands (1982). Google Scholar

  • [50]

    L. O. Sternberg, M. J. DeNiro, H. B. Johnson. Plant Physiol. 74, 557 (1984). Google Scholar

  • [51]

    W. E. Schiegl, J. C. Vogel. Earth Planet. Sci. Lett. 7, 307 (1970). Google Scholar

  • [52]

    W. E. Schiegl. Science 175, 512 (1972). Google Scholar

  • [53]

    R. S. Oremland, M. J. Whiticar, F. E. Strohmaier, R. P. Kiene. Geochim. Cosmochim. Acta 52, 1895 (1988). Google Scholar

  • [54]

    J. W. Smith, R. J. Pallasser. Am. Assoc. Pet. Geol. Bull. 80, 891 (1996). Google Scholar

  • [55]

    C. Redding. In 4th International Conference on Geochronology, Cosmochronology and Isotope Geology, U.S. Geological Survey Open-File Report 78-701, U.S. Geological Survey Open-File Report p. 348 (1978). Google Scholar

  • [56]

    P. Rauschenbach, H. Simon, W. Stichler, H. Moser. Z. Naturforsch 34, 1 (1979). Google Scholar

  • [57]

    A. K. Snover, P. D. Quay, W. M. Hao. Global Biogeochem. Cycles 14, 11 (2000). Google Scholar

  • [58]

    M. Wahlen. Annu Rev. Earth. Planet. Sci. 21, 407 (1993). Google Scholar

  • [59]

    R. S. Oremland, L. G. Miller, M. J. Whiticar. Geochim. Cosmochim. Acta 51, 2915 (1987). Google Scholar

  • [60]

    M. Schoell. Geochim. Cosmochim. Acta 44, 649 (1980). Google Scholar

  • [61]

    I. Friedman, T. G. Scholz. J. Geophys. Res. 79, 785 (1974). Google Scholar

  • [62]

    B. Gonsior, I. Friedman, G. Lindenmayr. Tellus 18, 256 (1966). Google Scholar

  • [63]

    R. M. Coveney, E. D. Goebel, E. J. Zeller, G. A. M. Dreschhoff, E. E. Angino. Am. Assoc. Pet. Geol. Bull. 71, 39 (1987). Google Scholar

  • [64]

    J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, T. Prohaska. Pure Appl. Chem. 88, 265 (2016). Google Scholar

  • [65]

    C.-F. You, L.-H. Chan. Geochim. Cosmochim. Acta 60, 909 (1996). Google Scholar

  • [66]

    C. Lui-Heung, J. M. Edmond. Geochim. Cosmochim. Acta 52, 1711 (1988). Google Scholar

  • [67]

    C. Lui-Heung, J. M. Gieskes, Y. Chen-Feng, J. M. Edmond. Geochim. Cosmochim. Acta 58, 4443 (1994). Google Scholar

  • [68]

    L.-H. Chan, J. M. Edmond, G. Thompson. J. Geophys. Res. 98 (B6), 9653 (1993). Google Scholar

  • [69]

    J. Hoefs, M. Sywall. Geochim. Cosmochim. Acta 61, 2679 (1997). Google Scholar

  • [70]

    R. D. Vocke, Jr., E. S. Beary, R. J. Walker. In V.M. Goldschmidt Conference; programs and abstracts, p. 89, Geochemical Society, (1990). Google Scholar

  • [71]

    L.-H. Chan, J. M. Edmond, G. Thompson, K. Gillis. Earth Planet. Sci. Lett. 108, 151 (1992). Google Scholar

  • [72]

    L.-H. Chan, C.-F. You, W. P. Leeman. In Geological Society of America, 1995 annual meeting, 1995 annual meeting, p. 38 (1995). Google Scholar

  • [73]

    T. D. Bullen, Y. K. Kharaka. In Proceedings of the 7th International Symposium on Water–Rock Interaction, Y. K. Kharaka, and A.S. Maest (Eds), p. 887 (1992). Google Scholar

  • [74]

    P. B. Tomascak, S. J. Lynton, R. J. Walker, E. J. Krogstad. In The Origin of Granites and Related Rocks: U.S. Geological Survey Circular, M. Brown, and P. M. Piccoli (Eds.), p. 151 (1995). Google Scholar

  • [75]

    A. E. Cameron. J. Am. Chem. Soc. 77, 2731 (1955). Google Scholar

  • [76]

    H. J. Svec, A. R. Anderson. Geochim. Cosmochim. Acta 29, 633 (1965). Google Scholar

  • [77]

    H. P. Qi, T. B. Coplen, Q. Zh. Wang, Y. H. Wang. Anal. Chem. 69, 4076 (1997). Google Scholar

  • [78]

    A. Vengosh, A. R. Chivas, M. T. Mcculloch, A. Starinsky, Y. Kolodny. Geochim. Cosmochim. Acta 55, 2591 (1991). Google Scholar

  • [79]

    M. Nomura, T. Kanzaki, T. Ozawa, M. Okamoto, H. Kakihana. Geochim. Cosmochim. Acta 46, 2403 (1982). Google Scholar

  • [80]

    U. S. Klötzli. Chem. Geol. (Isotope Geosci. Sect.) 101, 111 (1992). Google Scholar

  • [81]

    A. J. Spivack, J. M. Edmond. Geochim. Cosmochim. Acta 51, 1033 (1987). Google Scholar

  • [82]

    G. H. Swihart, P. B. Moore, E. L. Callis. Geochim. Cosmochim. Acta 50, 1297 (1986). Google Scholar

  • [83]

    A. Vengosh, Y. Kolodny, A. Starinsky, A. R. Chivas, M. T. Mcculloch. Geochim. Cosmochim. Acta 55, 2901 (1991). Google Scholar

  • [84]

    A. J. Spivack. Boron Isotope Geochemistry, Ph.D. Joint Program in Oceanography. Massachusetts Institute of Technology, Boston (1986). Google Scholar

  • [85]

    S. Tonarini, M. Pennisi, A. Adorni-Braccesi, A. Dini, G. Ferrara, R. Gonfiantini, M. Gröning, M. Wiedenbeck. Geostand. Newslett. 27, 21 (2003). Google Scholar

  • [86]

    M. R. Palmer, N. C. Sturchio. Geochim. Cosmochim. Acta 54, 2811 (1990). Google Scholar

  • [87]

    H. O. Finley, A. R. Eberle, C. J. Rodden. Geochim. Cosmochim. Acta 26, 911 (1962). Google Scholar

  • [88]

    E. K. Agyei, C. C. McMullen. Can. J. Earth Sci. 5, 921 (1968). Google Scholar

  • [89]

    R. B. Trumbull, M. Chaussidon. Chem. Geol. 153, 125 (1999). Google Scholar

  • [90]

    G. Wang, Y. K. Xiao. Rock Mineral Anal. 19, 169 (2000). Google Scholar

  • [91]

    G. H. Swihart, P. B. Moore. Geochim. Cosmochim. Acta 53, 911 (1989). Google Scholar

  • [92]

    T. Ishikawa, E. Nakamura. Earth Planet. Sci. Lett. 117, 567 (1993). Google Scholar

  • [93]

    M. E. Wieser, S. S. Iyer, H. R. Krouse, M. I. Cantagallo. Appl. Geochem. 16, 317 (2001). Google Scholar

  • [94]

    R. A. Vanderpool, P. E. Johnson. J. Agric. Food. Chem. 40, 462 (1992). Google Scholar

  • [95]

    P. M. Kroopnick. Deep-Sea Res. 32, 57 (1985). Google Scholar

  • [96]

    A. Nissenbaum, B. J. Presley, I. R. Kaplan. Geochim. Cosmochim. Acta 36, 1007 (1972). Google Scholar

  • [97]

    G. E. Claypool, C. N. Threlkeld, P. N. Mankeiwicz, M. A. Arthur, T. F. Anderson. In Intial Reports- Deep Sea Drilling Project, v. 84, p. 683 (1985). Google Scholar

  • [98]

    P. Deines, D. P. Gold. Geochim. Cosmochim. Acta 37, 1709 (1973). Google Scholar

  • [99]

    P. Deines. Geochim. Cosmochim. Acta 32, 613 (1968). Google Scholar

  • [100]

    L. S. Land. In Concepts and Models of Dolomite Formation, D. A. Zenger (Ed.), Society Economic Paleontology Minerology, Special Publications, v. 28, p. 87 (1980). Google Scholar

  • [101]

    W. G. Deuser. Earth Planet. Sci. Lett. 8, 118 (1970). Google Scholar

  • [102]

    C. D. Keeling, S. C. Piper, M. Heimann. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In Aspects of climate variability in the Pacific and the Western Americas, D. H. Peterson (Ed.), American Geophysical Union, Washington, DC, 305 (1989). doi: . CrossrefGoogle Scholar

  • [103]

    C. D. Keeling. Geochim. Cosmochim. Acta 13, 322 (1958). Google Scholar

  • [104]

    R. Aravena, S. K. Frape, B. J. Moore, E. M. Van Warmerdam, R. J. Drimmie. Water Res. Manage. 1, 31 (1996). Google Scholar

  • [105]

    K. Notsu, K. Sugiyama, M. Hosoe, A. Uemura, Y. Shimoike, F. Tsunomori, P. A. Hernandez. In Eleventh Annual VM Goldschmidt Conference. Abstract 3224, LPI Contribution NO. 1088, Lunar and Planetary Institute, Houston (CD-ROM), (2001). Google Scholar

  • [106]

    V. M. Valysaev, Y. I. Grinchenko, V. Ye. Yerokhin, V. S. Prokhorov, G. A. Titkov. Lithol. Miner. Resour. 20, 62 (1985). Google Scholar

  • [107]

    G. J. Wasserburg, E. Mazor, R. H. Zartman. In Earth and Science Meteoritics, J. Geiss, E.D. Goldberg (Eds.), p. 219, Amsterdamn, The Netherlands (1963). Google Scholar

  • [108]

    M. J. Whiticar, M. Hovland, M. Kastner, J. Sample. In Proceedings of the Ocean Drilling Program, Scientific Results, B. Carson, G. Westbrook (Eds.), p. 385, v. 146, (1995). Google Scholar

  • [109]

    NIST. Report of Investigation, Reference Materials 8562–8564, Gaithersburg, Maryland, National Institute of Standards and Technology. Google Scholar

  • [110]

    K. Žák, R. Skála. Chem. Geol. (Isotope Geosci. Sect.) 106, 123 (1993). Google Scholar

  • [111]

    B. A. Hofmann, S. M. Bernasconi. Chem. Geol. 149, 127 (1998). Google Scholar

  • [112]

    C. A. Brenninkmeijer. J. Geophys. Res.Atmos. 98, 10595 (1993). Google Scholar

  • [113]

    C. M. Stevens, L. Krout, D. Walling, A. Venters, A. Engelkemeir, L. E. Ross. Earth Planet. Sci. Lett. 16, 147 (1972). Google Scholar

  • [114]

    M. H. O’Leary. Biosci. 38, 328 (1988). Google Scholar

  • [115]

    B. N. Smith, B. Turner. Am. J. Bot. 62, 541 (1975). Google Scholar

  • [116]

    P. Deines. In Handbook of environmental isotope geochemistry, Volume 1, The Terrestrial Environment, A.P. Fritz, J. Ch. Pontes (Eds.), p. 329, Elsevier Scientific Publishing Co., Amsterdam, The Netherlands (1980). Google Scholar

  • [117]

    C. K. Paull, A. J. T. Jull, L. J. Toolin, T. Linick. Nature 317, 709 (1985). Google Scholar

  • [118]

    H. P. Schwarcz. In Handbook of Geochemistry, K.H. Wedepohl (Ed.), p. 6B1, The Stable Isotopes of Carbon, Springer-Verlag, Berlin, Germany Section B-1, (1969). Google Scholar

  • [119]

    M. Elvert, E. Suess, J. Greinert, M. J. Whiticar. Org. Geochem. 31, 1175 (2000). Google Scholar

  • [120]

    Z. Sofer. Am. Assoc. Pet. Geol. Bull. 68, 31 (1984). Google Scholar

  • [121]

    E. D. Ghent, J. R. O’Neil. Can. J. Earth Sci. 22, 324 (1985). Google Scholar

  • [122]

    E. Galimov. Geochem. Internal. 22, 118 (1985). Google Scholar

  • [123]

    J. Harris. In Mantle xenoliths, P.H. Nixon (Ed.), p. 477, John Wiley and Sons Ltd., New York (1987). Google Scholar

  • [124]

    G. Hut. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations: IAEA, Vienna 16–18 September 1985: Report to the Director General, International Atomic Energy Agency (1987). 

  • [125]

    P. Gerling, M. J. Whiticar, E. Faber. Adv. Org. Geochem. 13, 335 (1988). Google Scholar

  • [126]

    D. A. Merritt, J. M. Hayes, D. J. DesMarias. J. Geophys. Res. Atmos. 100, 1317 (1995). Google Scholar

  • [127]

    A. E. Bainbridge, H. E. Suess, I. Friedman. Nature 192, 648 (1961). Google Scholar

  • [128]

    M. J. Whiticar, E. Faber, M. Schoell. Geochim. Cosmochim. Acta 50, 693 (1986). Google Scholar

  • [129]

    R. S. Oremland, G. M. King. In Microbial Mats: Physiological Ecology of Benthic Microbial Communities, Y. Cohen, E. Rosenberg (Eds.), p. 180, American Society for Microbiology, Washington, DC (1989). Google Scholar

  • [130]

    T. H. E. Heaton. Atmos. Environ. 21, 843 (1987). Google Scholar

  • [131]

    H. Moore. Atmos. Environ. 11, 1239 (1977). Google Scholar

  • [132]

    N. Ostrom. Stable isotopic variation in particulate organic matter and dissolved inorganic compounds in a northern fjord: Implications for present and past environments, Ph.D Dissertation. Memorial University of Newfoundland, Newfoundland, Canada (1992). Google Scholar

  • [133]

    A. Mariotti, C. Lancelot, G. Billen. Geochim. Cosmochim. Acta 48, 549 (1984). Google Scholar

  • [134]

    S. G. Horrigan, J. P. Montoya, J. L. Nevins, J. J. Mccarthy. Estuar. Coast. Shelf Sci. 30, 393 (1990). Google Scholar

  • [135]

    A. Mariotti, A. Landreau, B. Simon. Geochim. Cosmochim. Acta 52, 1869 (1988). Google Scholar

  • [136]

    H. D. Freyer, K. Kobel, R. J. Delmas, D. Kley, M. R. Legrand. Tellus B 48, 93 (1996). Google Scholar

  • [137]

    E. Wada, R. Shibata, T. Torii. Nature 292, 327 (1981). Google Scholar

  • [138]

    C. Kreitler. Determining the source of nitrate in groundwater by nitrogen isotope studies, Ph.D. Dissertation. University of Texas Austin, Texas, Bureau of Economic Geology Report of Investigations No. 83 (1974). Google Scholar

  • [139]

    J. K. Böhlke, G. E. Ericksen, K. Revesz. Chem. Geol. 136, 135 (1997). Google Scholar

  • [140]

    J. N. Densmore, J. K. Böhlke. In Interdisciplinary Perspectives on Drinking Water Risk Assessment and Management, E.G. Reichard, F.S. Hauchman, A.M. Sancha (Eds.), p. 63, International Association of Hydrological Sciences Publication 260, (2000). Google Scholar

  • [141]

    H. D. Freyer, A. I. M. Aly. J. Environ. Qual. 3, 405 (1974). Google Scholar

  • [142]

    G. B. Shearer, D. H. Kohl, B. Commoner. Soil Science 118, 308 (1974). Google Scholar

  • [143]

    J. K. Böhlke, R. L. Smith, K. M. Revesz, T. Yoshinari. Trans. Am. Geophys. Union 81, S186 (2000). Google Scholar

  • [144]

    H. Moore. Tellus 26B, 169 (1974). Google Scholar

  • [145]

    N. Yoshida, S. Matsuo. Geochem. J. 17, 231 (1983). Google Scholar

  • [146]

    N. Yoshida, H. Morimoto, M. Hirano, I. Koike, S. Matsuo, E. Wada, T. Saino, A. Hattori. Nature 342, 895 (1989). Google Scholar

  • [147]

    T. Yoshinari, M. A. Altabet, S. W. A. Naqvi, L. Codispoti, A. Jayakumar, M. Kuhland, A. Devol. Mar. Chem. 56, 253 (1997). Google Scholar

  • [148]

    A. Mariotti. Nature 303, 685 (1983). Google Scholar

  • [149]

    J. C. Vogel, A. S. Talma, T. H. E. Heaton. J. Hydrol. 50, 191 (1981). Google Scholar

  • [150]

    R. L. Smith, B. L. Howes, J. H. Duff. Geochim. Cosmochim. Acta 55, 1815 (1991). Google Scholar

  • [151]

    B. Marty, E. Gunnlaugsson, A. Jambon, N. Oskarsson, M. Ozima, F. Pineau, P. Torssander. Chem. Geol. 91, 207 (1991). Google Scholar

  • [152]

    P. Allard. In Forecasting Volcanic Events, Developments in Volcanology, H. Tazieff, J.-C. Sabroux (Eds.), p. 337, Elsevier, New York v. 1, (1983). Google Scholar

  • [153]

    L. Stroud, T. O. Meyer, D. E. Emerson. U.S. Department of the Interior, Bureau of Mines, Report of Investigation 6936 (1967). Google Scholar

  • [154]

    V. R. Eichmann, A. Plate, W. Behrens, H. Kroepelin. Erdoel Kohle 24, 2 (1971). Google Scholar

  • [155]

    G. B. Shearer, J. O. Legg. Soi. Sci. Soc. Am. Proc. 39, 896 (1975). Google Scholar

  • [156]

    M. Zschiesche. Entwicklung proben chemischen Verfahren zur Bestimmung der isotopen Zusammensetzung des N aus Gasen, Gesteinen, und N-Lieferanten für bakteriologische Modelluntersuchungen, Ph.D. Dissertation. Karl-Marx-Universitat, Leipzig, Germany (1972). Google Scholar

  • [157]

    M. A. Altabet, J. J. McCarthy. Deep Sea Res. Part A. Ocean. Res. Papers 32, 755 (1985). Google Scholar

  • [158]

    T. Hoering. Science 122, 1233 (1955). Google Scholar

  • [159]

    D. Rigby, B. D. Batts. Chem. Geol. 58, 273 (1986). Google Scholar

  • [160]

    T. C. Hoering, H. E. Moore. Geochim. Cosmochim. Acta 13, 225 (1958). Google Scholar

  • [161]

    H. Mizutani, H. Hasegawa, E. Wada. Biogeochemistry 2, 221 (1986). Google Scholar

  • [162]

    G. E. Bebout, M. L. Fogel. Geochim. Cosmochim. Acta 56, 2839 (1992). Google Scholar

  • [163]

    D. Haendel, K. Muhle, H.-M. Nitzsche, G. Stiehl, U. Wand. Geochim. Cosmochim. Acta 50, 749 (1986). Google Scholar

  • [164]

    D. P. Mattey, L. P. Carr, R. H. Carr, I. P. Wright, C. T. Pillinger. In The Early Earth: The Interval from Accretion to the Older Archean, Lunar and Planetary Institute Technical Report, v. 85-01, p. 59 (1985). Google Scholar

  • [165]

    K. Mayne. Geochim. Cosmochim. Acta 12, 185 (1957). Google Scholar

  • [166]

    H. D. Freyer. Tellus A 30, 83 (1978). Google Scholar

  • [167]

    L. J. Moore, L. A. Machlan, W. R. Shields, E. L. Garner. Anal. Chem. 46, 1082 (1974). Google Scholar

  • [168]

    D. J. Velinsky, M. L. Fogel, J. F. Todd, B. M. Tebo. Geophys. Res. Lett. 18, 649 (1991). Google Scholar

  • [169]

    D. J. Velinsky, J. R. Pennock, J. H. Sharp, L. A. Cifuentes, M. L. Fogel. Mar. Chem. 26, 351 (1989). Google Scholar

  • [170]

    H. D. Freyer. Pure Appl. Geophy. 116, 393 (1978). Google Scholar

  • [171]

    V. F. Volynets, I. K. Zadorozhny, K. P. Florensky. Geokhimiya 5, 587 (1967). Google Scholar

  • [172]

    M. Drechsler. Entwicklung einer probenchemischen Methode zur Präzisionsisotopenanalyse am Stickstoff biogener Sedimente: Aussagen der Stickstoffisotopenvariationen zur Genese des Stickstoffs in Erdgasen, Ph.D. Dissertation. AdW der DDR, Leipzig, Germany (1976). Google Scholar

  • [173]

    P. Kroopnick, H. Craig. Science 175, 54 (1972). Google Scholar

  • [174]

    H. Craig. In McGraw-Hill Yearbook of Science and Technology, p. 268, Isotopic Composition of Ocean Water, McGraw-Hill, New York (1967). Google Scholar

  • [175]

    L. Aldaz, S. Deutsch. Earth Planet. Sci. Lett. 3, 267 (1968). Google Scholar

  • [176]

    E. A. Calwell. An understanding of factors controlling isotopic ratios of wine as a potential surrogate of past precipitation, M.Sc. Thesis. University of Nevada, Las Vegas, Nevada (1995). Google Scholar

  • [177]

    R. J. Francey, P. P. Tans. Nature 327, 495 (1987). Google Scholar

  • [178]

    M. H. Thiemens, T. L. Jackson, K. Mauersberger, B. Schueler, J. Morton. Geophys. Res. Lett. 18, 669 (1991). Google Scholar

  • [179]

    T. B. Coplen, C. Kendall, J. Hopple. Nature 302, 236 (1983). Google Scholar

  • [180]

    K. J. Murata, I. Friedman, B. M. Madsen. In U.S. Geological Survey Professional Paper 614-B, p. B1 (1969). Google Scholar

  • [181]

    G. D. Garlick. “The stable isotopes of oygen”, in Handbook of Geochemistry, K.H. Wedepohl (Ed.), p. 8B1, Springer-Verlag, Berlin, Germany (1969). Google Scholar

  • [182]

    K. Suwa, S. Oana, H. Wada, S. Osaki. Phy. Chem. Earth 9, 735 (1975). Google Scholar

  • [183]

    G. Faure, J. Hoefs, L. M. Jones, J. B. Curtis, D. E. Pride. Nature 332, 352 (1988). Google Scholar

  • [184]

    A. Makhnach, N. Mikhajlov, V. Shimanovich, I. Kolosov. Sediment Geol 94, 85 (1994). Google Scholar

  • [185]

    T. Pérez, S. E. Trumbore, S. C. Tyler, E. A. Davidson, M. Keller, P. B. de Camargo. Global Biogeochem. Cycles 14, 525 (2000). Google Scholar

  • [186]

    A. Amberger, H. L. Schmidt. Geochim. Cosmochim. Acta 51, 2699 (1987). Google Scholar

  • [187]

    K. W. J. Williard, D. R. DeWalle, P. J. Edwards, W. E. Sharpe. J. Hydrol. 252, 174 (2001). Google Scholar

  • [188]

    L. P. Knauth, D. R. Lowe. Earth Planet. Sci. Lett. 41, 209 (1978). Google Scholar

  • [189]

    L. D. Labeyrie, J. J. Pichon, M. Labracherie, P. Ippolito, J. Duprat, J. C. Duplessy. Nature 322, 701 (1986). Google Scholar

  • [190]

    Y. Kolodny, B. Luz, O. Navon. Earth Planet. Sci. Lett. 64, 398 (1983). Google Scholar

  • [191]

    J. D. Bryant, B. Luz, P. N. Froelich. Palaeogeogr., Palaeoclimatol., Palaeoecol. 107, 303 (1994). Google Scholar

  • [192]

    A. Longinelli, S. Nuti. Earth Planet. Sci. Lett. 5, 13 (1968). Google Scholar

  • [193]

    A. Shemesh, Y. Kolodny, B. Luz. Earth Planet. Sci. Lett. 64, 405 (1983). Google Scholar

  • [194]

    P. Blattner, G. W. Grindley, C. J. Adams. Geochim. Cosmochim. Acta 61, 569 (1997). Google Scholar

  • [195]

    J. K. Böhlke, J. C. Alt, K. Muehlenbachs. Can. J. Earth Sci. 21, 67 (1984). Google Scholar

  • [196]

    A. L. Norman, H. R. Krouse. In Atmospheric Chmemistry, Papers from the 9th World Clean Air Congress, Critical Issues in the Global Environment, Air and Waste Management Association, Pittsburgh, Pennsylvania, v. 2, Paper IU8.01 (1992). Google Scholar

  • [197]

    Y. Mizutani, T. A. Rafter. Geochem. J. 6, 183 (1973). Google Scholar

  • [198]

    A. Longinelli. In Handbook of Environmental Isotope Geochemistry, Volume 3, P. Fritz, J.Ch. Fontes (Eds.), p. 219, Elsevier Scientific Publishing Co., Amsterdam, The Netherlands (1989). Google Scholar

  • [199]

    M. J. Hendry, H. R. Krouse, M. A. Shakur. Water Resour. Res. 25, 567 (1989). Google Scholar

  • [200]

    A. Longinelli, H. Craig. Science 156, 56 (1967). Google Scholar

  • [201]

    C. J. Yonge, H. R. Krouse. Chem. Geol. (Isotope Geosci. Sect.) 65, 427 (1987). Google Scholar

  • [202]

    H. Sakai. Geochem. J. 5, 79 (1971). Google Scholar

  • [203]

    M. P. Cecile, M. A. Shakur, H. R. Krouse. Can. J. Earth Sci. 20, 1528 (1983). Google Scholar

  • [204]

    J. Dunbar, A. T. Wilson. Anal. Chem. 54, 590 (1982). Google Scholar

  • [205]

    E. B. Bolou-Bi, N. Vigier, A. Brenot, A. Poszwa. Geostandards Geoanal. Res. 33, 95 (2009). Google Scholar

  • [206]

    E. Tipper, A. Galy, M. Bickle. Earth Planet. Sci. Lett. 247, 267 (2006). Google Scholar

  • [207]

    E. B. Bolou-Bi, N. Vigier, A. Poszwa, J.-P. Boudot, E. Dambrine. Geochim. Cosmochim. Acta 87, 341 (2012). Google Scholar

  • [208]

    N. Pearson, W. Griffin, O. Alard, S. Y. O’Reilly. Chem. Geol. 226, 115 (2006). Google Scholar

  • [209]

    F. Wombacher, A. Eisenhauer, F. Böhm, N. Gussone, M. Regenberg, W.-C. Dullo, A. Rüggeberg. Geochim. Cosmochim. Acta 75, 5797 (2011). Google Scholar

  • [210]

    A. Galy, N. S. Belshaw, L. Halicz, R. K. O’Nions. Int. J. Mass Spectrom. 208, 89 (2001). Google Scholar

  • [211]

    C. Douthitt. Geochim. Cosmochim. Acta 46, 1449 (1982). Google Scholar

  • [212]

    D. L. Lu, G. J. Wan. Geol. Explor. 28, 28 (1992). Google Scholar

  • [213]

    T. Ding, S. Jiang, D. Wan, Y. Li, J. Li, H. Song, Z. Liu, X. Yao. Silicon Isotope Geochemistry, Geological Publishing House, Beijing (1996). Google Scholar

  • [214]

    M. J. Huang, R. Q. Li, D. Y. Liu, Z. J. Shen, S. H. Tang, W. S. Chen. A study on exploration mineralogy and mineral prediction of rock-bounded metallogenic series of ore deposits in southern Hunan (in Chinese). Hunan Bureau of Geology and Mineral Resources, 97 (1991). Google Scholar

  • [215]

    I. Basile-Doelsch, J. D. Meunier, C. Parron. Nature 433, 399 (2005). Google Scholar

  • [216]

    S. Y. Wu. The submarine hydrothermal chimney of the Mariana Trough and sediments in the Philippine Sea (in Chinese). Oceanic Publishing House, Beijing (1991). Google Scholar

  • [217]

    D. Tiping, W. Defang, L. Jincheng, J. Shaoyong, S. Hebing, L. Yanhe, L. Zhijian. Kuangchang Dizhi (Mineral Deposits) 7, 90 (1988). Google Scholar

  • [218]

    R. S. Kaufmann, A. Long, D. J. Campbell. Am. Assoc. Pet. Geol. Bull. 72, 839 (1988). Google Scholar

  • [219]

    B. Ransom, A. J. Spivack, M. Kastner. Geology 23, 715 (1995). Google Scholar

  • [220]

    W. G. Liu, Y. K. Xiao, Q. Z. Wang, H. P. Qi, Y. H. Wang, Z. M. Zhou, P. V. Shirodkar. Chem. Geol. 136, 271 (1997). Google Scholar

  • [221]

    R. S. Kaufman, S. Arnórsson. “37Cl/35Cl ratios in Icelandic geothermal waters”, Fifth International Symposium on Water Rock Interaction, Extended Abstracts: v. 5, p. 325 (1986). Google Scholar

  • [222]

    A. Long, C. J. Eastoe, R. S. Kaufmann, J. G. Martin, L. Wirt, J. B. Finley. Geochim. Cosmochim. Acta 57, 2907 (1993). Google Scholar

  • [223]

    R. S. Kaufmann, A. Long, H. W. Bentley, S. N. Davis. Nature 309, 338 (1984). Google Scholar

  • [224]

    T. C. Hoering, P. L. Parker. Geochim. Cosmochim. Acta 23, 186 (1961). Google Scholar

  • [225]

    A. J. Magenheim, A. J. Spivack, P. J. Michael, J. M. Gieskes. Earth Planet. Sci. Lett. 131, 427 (1995). Google Scholar

  • [226]

    N. Tanaka, D. M. Rye. Nature 353, 707 (1991). Google Scholar

  • [227]

    N. Jendrzejewski, H. G. M. Eggenkamp, M. L. Coleman. Appl. Geochem. 16, 1021 (2001). Google Scholar

  • [228]

    O. Shouakar-Stash, S. V. Alexeev, S. K. Frape, L. P. Alexeeva, R. J. Drimmie. Appl. Geochem. 22, 589 (2007). Google Scholar

  • [229]

    D. Carrizo, M. Unger, H. Holmstrand, P. Andersson, Ö. Gustafsson, S. P. Sylva, C. M. Reddy. Environ. Chem. 8, 127 (2011). Google Scholar

  • [230]

    M. Rehkamper, A. N. Halliday. Geochim. Cosmochim. Acta 63, 935 (1999). Google Scholar

  • [231]

    M. Rehkämper, M. Frank, A. Halliday, J. Hein. In 11th Biannual Symposium, Strassbourg, Book of Abstracts, (2001). Google Scholar

  • [232]

    T. B. Coplen, Y. Shrestha. Tables and Charts for Isotope-Abundance Variations and Atomic Weights of Selected Elements: 2016: U.S. Geological Survey Data Release, (2016) http://dx.doi.org/10.5066/F7GF0RN2Crossref

  • [233]

    H. A. J. Meijer, W. J. Li. Isotopes Environ. Health Stud. 34, 349 (1998). Google Scholar

  • [234]

    I. Friedman, J. O’Neil, G. Cebula. Geostand. Newslett. 6, 11 (1982). Google Scholar

Note:

Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC or De Gruyter permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, the name De Gruyter, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization and De Gruyter.

About the article

Received: 2016-03-25

Accepted: 2016-09-26

Published Online: 2017-01-06

Published in Print: 2016-12-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0302.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anja Mahne Opatić, Marijan Nečemer, Sonja Lojen, Jasmina Masten, Emil Zlatić, Helena Šircelj, David Stopar, and Rajko Vidrih
Food Control, 2017
[2]
Michael D. Dolan, Krystina E. Lamb, Jenny B. Evtimova, and David M. Viano
International Journal of Hydrogen Energy, 2017

Comments (0)

Please log in or register to comment.
Log in