Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 88, Issue 9


CD44 expression trends of mesenchymal stem-derived cell, cancer cell and fibroblast spheroids on chitosan-coated surfaces

Ching-Wen Tsai
  • Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Province of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tai-Horng YoungORCID iD: http://orcid.org/0000-0001-5338-4747
Published Online: 2016-08-12 | DOI: https://doi.org/10.1515/pac-2016-0405


CD44, a cell-surface glycoprotein, plays an important role in cell proliferation, adhesion, migration, and other biological functions, which are related with the physiological and pathologic activities of cells. Especially, CD44 is extensively expressed within adult bone marrow and has been considered as an important marker for some cancer stem cells (CSCs) in various types of tumors. Therefore, it is essential to understand the variations in CD44 expression of stem cells and cancer cells for further clinical applications. In this paper, CD44 expression was assessed on a human colon cancer cell line (SW620), a human mesenchymal stem-like cell line (3A6), and a human foreskin fibroblast line (Hs68). We used chitosan to establish a suspension culture model to develop multicellular spheroids to mimic a three-dimension (3D) in vivo environment. Obviously, CD44 expression on 3A6 and SW620 cells was dynamic and diverse when they were in the aggregated state suspended on chitosan, while Hs68 cells were relatively stable. Furthermore, we discuss how to regulate CD44 expression of 3A6 and SW620 cells by the interactions between cell and cell, cell and chitosan, as well as cell and microenvironment. Finally, the possible mechanism of chitosan to control CD44 expression of cells is proposed, which may lead to the careful use of chitosan for potential clinical applications.

Keywords: cancer cells; chitosan; CD44 expression; EUCHIS-12; fibroblasts; ICCC-13; mesenchymal stem cells

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August–2 September 2015.


  • [1]

    D. H. Lee, S. D. Joo, S. B. Han, J. Im, S. H. Lee, C. H. Sonn, K. M. Lee. Connect Tissue Res. 52, 226 (2011).Google Scholar

  • [2]

    S. K. Both, A. J. van der Muijsenberg, C. A. van Blitterswijk, J. de Boer, J. D. de Bruijn. Tissue Eng. 13, 3 (2007).Google Scholar

  • [3]

    J. H. Sung, H. M. Yang, J. B. Park, G. S. Choi, J. W. Joh, C. H. Kwon, J. M. Chun, S. K. Lee, S. J. Kim. Transplant Proc. 40, 2649 (2008).Google Scholar

  • [4]

    T. L. Ramos, L. I. Sanchez-Abarca, S. Muntion, S. Preciado, N. Puig, G. Lopez-Ruano, A. Hernandez-Hernandez, A. Redondo, R. Ortega, C. Rodriguez, F. Sanchez-Guijo, C. Del Canizo. Cell Commun. Signal 14, 2 (2016).Google Scholar

  • [5]

    R. Pardal, M. F. Clarke, S. J. Morrison. Nat. Rev. Cancer 3, 895 (2003).Google Scholar

  • [6]

    N. Kobayashi, N. Navarro-Alvarez, A. Soto-Gutierrez, H. Kawamoto, Y. Kondo, T. Yamatsuji, Y. Shirakawa, Y. Naomoto, N. Tanaka. Cell Transplant 17, 19 (2008).Google Scholar

  • [7]

    T. Reya, S. J. Morrison, M. F. Clarke, I. L. Weissman. Nature 414, 105 (2001).Google Scholar

  • [8]

    S. Takaishi, T. Okumura, S. Tu, S. S. Wang, W. Shibata, R. Vigneshwaran, S. A. Gordon, Y. Shimada, T. C. Wang. Stem Cells 27, 1006 (2009).Google Scholar

  • [9]

    P. Dalerba, S. J. Dylla, I. K. Park, R. Liu, X. Wang, R. W. Cho, T. Hoey, A. Gurney, E. H. Huang, D. M. Simeone, A. A. Shelton, G. Parmiani, C. Castelli, M. F. Clarke. Proc. Natl. Acad. Sci. USA 104, 10158 (2007).Google Scholar

  • [10]

    M. Zoller. Nat. Rev. Cancer 11, 254 (2011).Google Scholar

  • [11]

    L. Du, H. Wang, L. He, J. Zhang, B. Ni, X. Wang, H. Jin, N. Cahuzac, M. Mehrpour, Y. Lu, Q. Chen. Clin. Cancer Res. 14, 6751 (2008).Google Scholar

  • [12]

    L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria. Nature 445, 111 (2007).Google Scholar

  • [13]

    T. M. Elsaba, L. Martinez-Pomares, A. R. Robins, S. Crook, R. Seth, D. Jackson, A. McCart, A. R. Silver, I. P. Tomlinson, M. Ilyas. PLoS One 5, e10714 (2010).Google Scholar

  • [14]

    X. Fan, N. Ouyang, H. Teng, H. Yao. Int. J. Colorectal Dis. 26, 1279 (2011).Google Scholar

  • [15]

    V. R. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan. Int. J. Pharm. 274, 1 (2004).Google Scholar

  • [16]

    H. S. Kas. J. Microencapsul. 14, 689 (1997).Google Scholar

  • [17]

    A. K. Singla, M. L. Sharma, S. Dhawan. Biotech. Histochem. 76, 165 (2001).Google Scholar

  • [18]

    Y. Kato, H. Onishi, Y. Machida. Curr. Pharm. Biotechnol. 4, 303 (2003).Google Scholar

  • [19]

    C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, T. Cheng. J. Surg. Res. 133, 185 (2006).Google Scholar

  • [20]

    Y. H. Chen, Y. C. Chung, I. J. Wang, T. H. Young. Biomaterials 33, 1336 (2012).Google Scholar

  • [21]

    C. Chatelet, O. Damour, A. Domard. Biomaterials 22, 261 (2001).Google Scholar

  • [22]

    Y. H. Chen, S. H. Chang, I. J. Wang, T. H. Young. Biomaterials 35, 9247 (2014).Google Scholar

  • [23]

    T. L. Yang, T. H. Young. Biochem. Biophys. Res. Commun. 381, 466 (2009).Google Scholar

  • [24]

    S. J. Lin, S. H. Jee, W. C. Hsaio, S. J. Lee, T. H. Young. Biomaterials 26, 1413 (2005).Google Scholar

  • [25]

    P. Verma, V. Verma, P. Ray, A. R. Ray. In Vitro Cell. Dev. Biol. Anim. 43, 328 (2007).Google Scholar

  • [26]

    G. S. Huang, L. G. Dai, B. L. Yen, S. H. Hsu. Biomaterials 32, 6929 (2011).Google Scholar

  • [27]

    C. W. Tsai, Y. T. Kao, I. N. Chiang, J. H. Wang, T. H. Young. PLoS One 10, e0140747 (2015).Google Scholar

  • [28]

    T. J. Bartosh, J. H. Ylostalo, A. Mohammadipoor, N. Bazhanov, K. Coble, K. Claypool, R. H. Lee, H. Choi, D. J. Prockop. Proc. Natl. Acad. Sci. USA 107, 13724 (2010).Google Scholar

  • [29]

    G. Benton, J. George, H. K. Kleinman, I. P. Arnaoutova. J. Cell. Physiol. 221, 18 (2009).Google Scholar

  • [30]

    G. Benton, H. K. Kleinman, J. George, I. Arnaoutova. Int. J. Cancer 128, 1751 (2011).Google Scholar

  • [31]

    J. E. Frith, B. Thomson, P. G. Genever. Tissue Eng. Part C Methods. 16, 735 (2010).Google Scholar

  • [32]

    A. Sadlonova, Z. Novak, M. R. Johnson, D. B. Bowe, S. R. Gault, G. P. Page, J. V. Thottassery, D. R. Welch, A. R. Frost. Breast Cancer Res. 7, R46 (2005).Google Scholar

  • [33]

    S. K. Singh, I. D. Clarke, M. Terasaki, V. E. Bonn, C. Hawkins, J. Squire, P. B. Dirks. Cancer Res. 63, 5821 (2003).Google Scholar

  • [34]

    W. Wang, K. Itaka, S. Ohba, N. Nishiyama, U. I. Chung, Y. Yamasaki, K. Kataoka. Biomaterials 30, 2705 (2009).Google Scholar

  • [35]

    H. Y. Yeh, B. H. Liu, S. H. Hsu. Biomaterials 33, 8943 (2012).Google Scholar

  • [36]

    N. C. Cheng, S. Wang, T. H. Young. Biomaterials 33, 1748 (2012).Google Scholar

  • [37]

    Y. J. Huang, S. H. Hsu. Biomaterials 35, 10070 (2014).Google Scholar

  • [38]

    C. C. Tsai, C. L. Chen, H. C. Liu, Y. T. Lee, H. W. Wang, L. T. Hou, S. C. Hung. J. Biomed. Sci. 17, 64 (2010).Google Scholar

  • [39]

    T. L. Yang, L. Lin, Y. C. Hsiao, H. W. Lee, T. H. Young. Tissue Eng. Part A 18, 2220 (2012).Google Scholar

  • [40]

    Y. H. Chen, I. J. Wang, T. H. Young. Tissue Eng. Part A 15, 2001 (2009).Google Scholar

  • [41]

    H. Ponta, L. Sherman, P. A. Herrlich. Nat. Rev. Mol. Cell Biol. 4, 33 (2003).Google Scholar

  • [42]

    Y. S. Park, J. W. Huh, J. H. Lee, H. R. Kim. Oncol. Rep. 27, 339 (2012).Google Scholar

  • [43]

    V. Trochon, C. Mabilat, P. Bertrand, Y. Legrand, F. Smadja-Joffe, C. Soria, B. Delpech, H. Lu. Int. J. Cancer 66, 664 (1996).Google Scholar

  • [44]

    E. Mylona, K. A. Jones, S. T. Mills, G. K. Pavlath. J. Cell. Physiol. 209, 314 (2006).Google Scholar

  • [45]

    A. L. Lazaar, S. M. Albelda, J. M. Pilewski, B. Brennan, E. Pure, R. A. Panettieri, Jr. J. Exp. Med. 180, 807 (1994).Google Scholar

  • [46]

    F. M. Watt, B. L. Hogan. Science 287, 1427 (2000).Google Scholar

  • [47]

    M. G. Nichols, T. H. Foster. Phys. Med. Biol. 39, 2161 (1994).Google Scholar

  • [48]

    J. Mathieu, Z. Zhang, W. Zhou, A. J. Wang, J. M. Heddleston, C. M. Pinna, A. Hubaud, B. Stadler, M. Choi, M. Bar, M. Tewari, A. Liu, R. Vessella, R. Rostomily, D. Born, M. Horwitz, C. Ware, C. A. Blau, M. A. Cleary, J. N. Rich, H. Ruohola-Baker. Cancer Res. 71, 4640 (2011).Google Scholar

  • [49]

    J. B. Lopes, L. A. Dallan, L. F. Moreira, S. P. Campana Filho, P. S. Gutierrez, L. A. Lisboa, S. A. de Oliveira, N. A. Stolf. Ann. Thorac. Surg. 90, 566 (2010).Google Scholar

About the article

Published Online: 2016-08-12

Published in Print: 2016-09-01

Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 843–852, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0405.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ching-Wen Tsai, Jyh-Horng Wang, and Tai-Horng Young
Artificial Cells, Nanomedicine, and Biotechnology, 2018, Page 1
Ching-Wen Tsai, I-Ni Chiang, Jyh-Horng Wang, and Tai-Horng Young
Artificial Cells, Nanomedicine, and Biotechnology, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in