Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 9

Issues

Hydrolysis of chitin and chitosan in low temperature electron-beam plasma

Tatiana Vasilieva
  • Corresponding author
  • Department of Chemistry, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey Lopatin / Valery Varlamov / Vladimir Miasnikov
  • Aerospace Research Department, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aung Myat Hein
  • Aerospace Research Department, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Vasiliev
  • Aerospace Research Department, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/pac-2016-0603

Abstract

Hydrolysis of natural chitin and chitosans was performed in the electron beam plasma (EBP) of oxygen, by means of specially designed electron beam plasmachemical reactor (EBPR). Low molecular water-soluble chitin oligosaccharides with weight-average molecular mass 800–2000 Da and polydispersion index 1.5–2.5 were produced due to action of active oxygen species formed in the EBP. By optimizing the treatment conditions the 95% yield of chitin oligosaccharides was obtained after 2 min whereas the conventional chemical hydrolysis usually takes several days. The studies of the antimicrobial activity of low molecular products formed due to EBP-stimulated degradation showed that they inhibit the multiplication of various mycelial and yeast-like fungi. The technique involved is likely to be promising for the production of bioactive low molecular chitin oligosaccharides and the EBP-stimulated hydrolysis appears to be competitive with technologies conventionally used in the industry.

Keywords: bioactive oligosaccharides; chitin; chitosan; electron-beam plasma; EUCHIS-12; ICCC-13; plasma-stimulated hydrolysis

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August–2 September 2015.

References

  • [1]

    S. D. Ray. Acta Pol. Pharm. 68, 619 (2011).Google Scholar

  • [2]

    P. Laurienzo. Mar. Drugs. 8, 2435 (2010).Google Scholar

  • [3]

    V. Zargar, M. Asghari, A. Dashti. ChemBioEng Rev. 2, 204 (2015).Google Scholar

  • [4]

    W. Pasanphan, P. Rimdusit, S. Choofong, T. Piroonpan, S. Nilsuwankosit. Radiat. Phys. Chem. 79, 1095 (2010).Google Scholar

  • [5]

    L. Zhao, H. Mitomo. Carbohyd. Polym. 76, 314 (2009).Google Scholar

  • [6]

    S. Yin, L. Ren, Y. Wang. Plasma Sci. Technol. 15, 1041 (2013).Google Scholar

  • [7]

    S. S. Silva, S. M. Luna, M. E. Gomes, J. Benesch, I. Pashkuleva, J. F. Mano, R. L. Reis. Macromol. Biosci. 8, 568 (2008).Google Scholar

  • [8]

    A. Ogino, M. Kral, M. Yamashita, M. Nagatsu. Appl. Surf. Sci. 255, 2347 (2008).Google Scholar

  • [9]

    T. M. Vasilieva. J. Phys.: Conf. Ser. 370, 012012 (2012).Google Scholar

  • [10]

    T. Vasilieva. In Practical Applications in Biomedical Engineering, A. O. Andrade, A. A. Pereira, E. L. M. Naves, A. B. Soares (Eds.), pp. 285–310. InTech, Rijeka, Croatia (2012).Google Scholar

  • [11]

    T. Vasilieva. IEEE Transac. Plasma Sci. 38, 1903 (2010).Google Scholar

  • [12]

    K. L. Chang, M. C. Tai, F. H. Cheng. J. Agric. Food Chem. 49, 4845 (2001).Google Scholar

  • [13]

    M. Wysokowski, I. Petrenko, A. L. Stelling, D. Stawski, T. Jesionowski, H. Ehrlich. Polymers. 7, 235 (2015).Google Scholar

  • [14]

    M. Wysokowski, I. Petrenko, M. Motylenko, E. Langer, V. V. Bazhenov, R. Galli, A. L. Stelling, Z. Kljajić, T. Szatkowski, V. Z. Kutsova, D. Stawski, T. Jesionowski. Bioinspired Materials. 1, 12 (2015).Google Scholar

  • [15]

    M. Wysokowski, M. Motylenko, J. Beyer, A. Makarova, H. Stoker, J. Walter, R. Galli, S. Kaiser, D. Vyalikh, V. V. Bazhenov, I. Petrenko, A. L. Stelling, D. Stawski, K. J. Kurzydlowski, E. Langer, M. V. Tsurkan, T. Jesionowski, J. Heitmann, D. C. Meyer. H. Ehrlich. Nano Res. 8, 2288 (2015).Google Scholar

  • [16]

    Extreme Biomimetics, H. Ehrlich, (Ed.) Springer International Publishing, Basel (2016).Google Scholar

About the article

Published Online: 2016-10-18

Published in Print: 2016-09-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 873–879, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0603.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tatiana Vasilieva, Dmitry Chuhchin, Sergey Lopatin, Valery Varlamov, Andrey Sigarev, and Michael Vasiliev
Molecules, 2017, Volume 22, Number 11, Page 1908

Comments (0)

Please log in or register to comment.
Log in