Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 9

Issues

Production of chitosan oligosaccharides for inclusion in a plant biostimulant

Oscar Goñi
  • Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, South Campus Tralee, co. Kerry, Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Quille
  • Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, South Campus Tralee, co. Kerry, Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shane O’Connell
  • Corresponding author
  • Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, South Campus Tralee, co. Kerry, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-15 | DOI: https://doi.org/10.1515/pac-2016-0701

Abstract

The use of biostimulants to enhance crop productivity is beginning to be adopted into mainstream agricultural practice. There is an emerging consensus on the critical role that low-cost and scalable chitosan oligosaccharide production systems can play in meeting the demands of this “greener” approach in agriculture. The objective of our research was to produce chitosan oligosaccharides (CHOS) mixtures that can work as plant biostimulants using cost effective enzymes. Commercial chitosans with a consistent formulation and available in bulk were used in the study. Chitosans were characterized in terms of degree of N-acetylation (pH-metric titration) and molecular weight (Ubbelohde viscometer). The yield of the CHOS were determined along with their physicochemical characteristics. The biological activity of the different CHOS mixtures were evaluated for efficacy against a fungal pathogen (F. oxysporum) in the susceptible tomato cultivar ‘Moneymaker’. The performance of some CHOS resulted in significant enhancements in a number of plant health indicators such as increased biomass, disease control and induction of ISR markers. Finally, the optimal CHOS preparation in terms of plant bioactivity was scaled up and validated by a preliminary field trial with the industrial tomato cultivar ‘H9661’. The effectiveness of this treatment on crop productivity was consistent with the results observed in the lab and similar to other commercial plant biostimulants.

Keywords: agriculture; chitosan oligosaccharides; commercial; EUCHIS-12; field trial; ICCC-13; plant biostimulants; sustainable; tomato

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August – 2 September 2015.

References

  • [1]

    FAO. How to Feed the World 2050. http://www.fao.org/..../HLEF2050_Investment.pdf (2009).

  • [2]

    P. Du Jardin. The Science of Plant Biostimulants: A bibliographic analysis. CONTRACT 30-CE0455515/00-96. European Commission Report (2012).

  • [3]

    L. A. Hadwiger. Plant Sci. 208, 42 (2013).Google Scholar

  • [4]

    W. M. Khan, B. Prithiviraj, D. L. Smith. Photosynthetica. 40, 621 (2002).Google Scholar

  • [5]

    N. Utsunomiya, H. Kinai. J. Jpn. Soc. Hortic. Sci. 64, 176 (1994).Google Scholar

  • [6]

    H. Yin, X. Zhao, Y. Du. Carbohydrate Polymers. 82, 1 (2010).Google Scholar

  • [7]

    D. Katiyar, A. Hemantaranjan, B. Singh, N. A. Bhanu. Adv. Plants. Agric. Res. 1, 00006 (2014).Google Scholar

  • [8]

    J. Brugnerotto, J. Desbrières, G. Roberts, M. Rinaudo. Polymer. 42, 09921 (2001).Google Scholar

  • [9]

    R. Czechowska-Biskup, D. Jarosińska, B. Rokita, P. Ulański, J. M. Rosiak. Prog. Chem. Appl. Chitin. Its. Deriv. 17, 5 (2012).Google Scholar

  • [10]

    E. N. Oliveira Jr, N. E. El Gueddari, B. M. Moerschbacher, M. G. Peter, T. T. Franco. Mycopathologia. 166, 163 (2008).Google Scholar

  • [11]

    G. Jakab, V. Cottier, V. Toquin, G. Rigoli, L. Zimmerli, J. P. Métraux, B. Mauch-Mani. Eur. J. Plant Pathol. 107, 29 (2001).Google Scholar

  • [12]

    C. Pinto, L. S. Rodrigues, J. L. Azevedo, J. O. Pereira, M. L. Carneiro Vieria, C. A. Labate. New Phytologist. 147, 609 (2000).Google Scholar

  • [13]

    U. Conrath, O. Thulke, V. Katz, S. Schwindling, A. Kohler. Eur. J. Plant. Pathol. 107, 113 (2001).Google Scholar

  • [14]

    F. Passardi, C. Cosio, C. Penel, C. Dunand. Plant Cell Rep. 24, 255 (2005).Google Scholar

  • [15]

    M. Arlorio, A. Ludwig, T. Boller, P. Bonfante. Protoplasma 171, 34 (1992).Google Scholar

About the article

Published Online: 2016-10-15

Published in Print: 2016-09-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 881–889, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0701.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in