Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 9

Issues

Commercial cellulases from Trichoderma longibrachiatum enable a large-scale production of chito-oligosaccharides

Gregor Tegl
  • Corresponding author
  • Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria, Tel.: (+43) 1 47654 97412
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Öhlknecht
  • Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Vielnascher
  • Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
  • ACIB – Austrian Centre of Industrial Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Kosma
  • Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Hofinger-Horvath
  • Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Geog M. Guebitz
  • Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
  • ACIB – Austrian Centre of Industrial Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-08 | DOI: https://doi.org/10.1515/pac-2016-0703

Abstract

Chito-oligosaccharides (COSs) are a substance class of high interest due to various beneficial bioactive properties. However, detailed mechanistic and application-related investigations are limited due to the poor availability of COSs with defined structural properties. Here, we present the large-scale production of COSs with defined degree of N-acetylation using a commercial cellulase preparation from Trichoderma longibrachiatum. The enzyme preparation was found to exclusively produce COSs lacking of acetyl groups while MS/MS analysis indicated a cellobiohydrolase to be the responsible for hydrolysis with the enzyme preparation. MS and NMR analysis proved the low content of acetyl groups in the COS mix and oligomers with a degree of polymerization (DP) of 2–6 were obtained. The low cost enzyme source was further exploited for large-scale production in a 20 g batch and resulted a COSs yield of 40%. An inexpensive enzyme source for the production of bioactive COSs was successfully implemented and thorough product analysis resulted in well-defined COSs. This strategy could improve the access to this substance class for a more detailed investigation of its various biological activities.

Keywords: analysis; cellobiohydorlase; chitosan; enzyme; EUCHIS-12; ICCC-13; mass spectrometry; NMR spectroscopy

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August – 2 September 2015.

References

  • [1]

    V. Zargar, M. Asghari, A. Dashti. ChemBioEng. Rev. 2, 204 (2015).Google Scholar

  • [2]

    I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, A. Heras. Curr. Chem. Biol. 3, 203 (2009).Google Scholar

  • [3]

    J. C. Fernandes, F. K. Tavaria, J. C. Soares, Ó. S. Ramos, M. João Monteiro, M. E. Pintado, F. X. Malcata. Food Microbiol. 25, 922 (2008).Google Scholar

  • [4]

    H. Honarkar, M. Barikani. Monatshefte Fuer Chemie 140, 1403 (2009).Google Scholar

  • [5]

    T. C. Chou, E. Fu, C. J. Wu, J. H. Yeh. Biochem. Biophys. Res. Commun. 302, 480 (2003).Google Scholar

  • [6]

    A. Domard. Carbohydr. Polym. 84, 696 (2011).Google Scholar

  • [7]

    S. Kim, N. Rajapakse. Carbohydr. Polym. 62, 357 (2005).Google Scholar

  • [8]

    B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sørlie, K. M. Vårum, V. G. H. Eijsink. Mar. Drugs 8, 1482 (2010).Google Scholar

  • [9]

    R. Xing, S. Liu, H. Yu, Z. Guo, P. Wang, C. Li, Z. Li, P. Li. Carbohydr. Res. 340, 2150 (2005).Google Scholar

  • [10]

    S. Trombotto, C. Ladavière, F. Delolme, A. Domard. Biomacromolecules 9, 1731 (2008).Google Scholar

  • [11]

    W. Jung, R. Park. Mar. Drugs 12, 5328 (2014).Google Scholar

  • [12]

    G. Tegl, C. Öhlknecht, R. Vielnascher, A. Rollett, A. Hofinger-Horvath, P. Kosma, G. M. Guebitz. Biomacromolecules 17, 2284 (2016).Google Scholar

  • [13]

    M. Ike, Y. Ko, K. Yokoyama, J. I. Sumitani, T. Kawaguchi, W. Ogasawara, H. Okada, Y. Morikawa. C. J. Mol. Catal. B Enzym. 47, 159 (2007).Google Scholar

  • [14]

    Y. H. P. Zhang, J. Hong, X. Ye. Biofuels: Methods and Protocols, Methods in Molecular Biology, Vol. 581, Springer, Berlin (2009).Google Scholar

  • [15]

    G. L. Miller. Anal. Biochem. 31, 426 (1959).Google Scholar

  • [16]

    G. L. Craig, R. C. Beavis. Bioinformatics 20, 1466 (2004).Google Scholar

  • [17]

    X. Zhang, YP. Zhang. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, (2013).Google Scholar

  • [18]

    W. Xia, P. Liu, J. Liu. Bioresour. Technol. 99, 6751 (2008).Google Scholar

  • [19]

    C. M. Payne, B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel, M. Sandgren, J. Ståhlberg, G. T. Beckham. Chem. Rev. 115, 1308 (2015).Google Scholar

  • [20]

    A. Olivera-Nappa, B. A. Andrews, J. A. Asenjo. Biotechnol. Bioeng. 86, 573 (2004).Google Scholar

  • [21]

    A. M. Klibanov. Nature 409, 24 (2001).Google Scholar

  • [22]

    H. Sugiyama, K. Hisamichi, K. Sakai, T. Usui, J. I. Ishiyama, H. Kudo, H. Ito, Y. Senda. Bioorganic Med. Chem. 9, 211 (2001).Google Scholar

  • [23]

    U. Hanefeld, L. Gardossi, E. Magner. Chem. Soc. Rev. 38, 453 (2009).Google Scholar

About the article

Published Online: 2016-10-08

Published in Print: 2016-09-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 865–872, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0703.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in