Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 9

Issues

Co-assembly of chitosan and phospholipids into hybrid hydrogels

Ana C. Mendes
  • Corresponding author
  • Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elhamalsadat Shekarforoush
  • Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Engwer
  • Institute for Biology and Biotechnology of Plants (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sophie R. Beeren / Christian Gorzelanny
  • Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco M. Goycoolea
  • Institute for Biology and Biotechnology of Plants (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ioannis S. Chronakis
  • Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-02 | DOI: https://doi.org/10.1515/pac-2016-0708

Abstract

Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties. A lower concentration of phospholipids (0.5% wt/v) in the mixture, facilitates faster network formation as observed by Dynamic Light Scattering, with lower elastic modulus than the hydrogels formed with higher phospholipid content. The nano-porous structure of Ch/P hydrogels, with a diameter of 260±20 nm, as observed by cryo-scanning electron microscopy, facilitated the penetration of water and swelling. Cell studies revealed suitable biocompatibility of the Ch/P hydrogels that can be used within life sciences applications.

Keywords: biomaterials; carbohydrates; chitosan; colloids; EUCHIS-12; hydrogel; ICCC-13; phospholipids; self-assembly

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August – 2 September 2015.

References

  • [1]

    N. Bhattarai, J. Gunn, M. Zhang, Adv. Drug Deliv. Rev. 62, 83 (2010).Google Scholar

  • [2]

    N. A. Peppas, J. J. Sahlin, Biomaterials 17, 1553 (1996).Google Scholar

  • [3]

    N. A Peppas, P. Bures, W. Leobandung, H. Ichikawa, Eur. J. Pharm. Biopharm. 50, 27 (2000).Google Scholar

  • [4]

    J. M. Shapiro, M. L. Oyen, J. Miner. Met. Mater. Soc. 65, 505 (2013).Google Scholar

  • [5]

    D. Buenger, F. Topuz, J. Groll, Prog. Polym. Sci. 37, 1678 (2012).Google Scholar

  • [6]

    M. Hamidi, A. Azadi, P. Rafiei, W. Hennink, C. van Nostrum, Adv. Drug Deliv. Rev. 54, 13 (2002).Google Scholar

  • [7]

    H. M. Shewan, J. R. Stokes, J. Food Eng. 119, 781 (2013).Google Scholar

  • [8]

    V. Balan, L. Verestiuc, Eur. Polym. J. 53, 171 (2014).Google Scholar

  • [9]

    R. Jayakumar, D. Menon, K. Manzoor, S. V. Nair, H. Tamura, Carbohydr. Polym. 82, 227 (2010).Google Scholar

  • [10]

    Y. Luo, Q. Wang, Int. J. Biol. Macromol. 64, 353 (2014).Google Scholar

  • [11]

    B. Menchicchi, A. Hensel, F. M. Goycoolea, Curr. Pharm. Des. 21, 4888 (2015).Google Scholar

  • [12]

    R. Souza, P. Zahedi, C. J. Allen, M. Piquette-Miller, Biomaterials 30, 3818 (2009).Google Scholar

  • [13]

    A. Anitha, S. Sowmya, P. T. Sudheesh Kumar, S. Deepthi, K. P. Chennazhi, H. Ehrlich, M. Tsurkan, R. Jayakumar, Prog. Polym. Sci. 39, 1 (2014).Google Scholar

  • [14]

    W. W. Thein-Han, W. F. Stevens, Drug Dev. Ind. Pharm. 30, 397 (2004).Google Scholar

  • [15]

    M. Dash, F. Chiellini, R. M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36, 981 (2011).Google Scholar

  • [16]

    V. K. Singh, P. M. Pandeyb, T. Agarwalb, D. Kumara, I. Banerjeeb, A. Anisc, K. Palb, J. Mech. Behav. Biomed. Mater. 55, 250 (2015).Google Scholar

  • [17]

    A. Bhatia, B. Singh, K. Raza, S. Wadhwa, O. P. Katare, Int. J. Pharm. 444, 47 (2013).Google Scholar

  • [18]

    N. Fang, V. Chan, H. Q. Mao, K. W. Leong, Biomacromolecules 2, 1161 (2001).Google Scholar

  • [19]

    O. Mertins, R. Dimova, Langmuir 29, 14545 (2013).Google Scholar

  • [20]

    O. Mertins, R. Dimova,. Langmuir 29, 14552 (2013).Google Scholar

  • [21]

    J. Grant, M. Blicker, M. Piquette-Miller, C. Allen, J. Pharm. Sci. 94, 1512 (2005).Google Scholar

  • [22]

    P. Zahedi, R. Souza,, M. Piquette-Miller, C. Allen, Int. J. Pharm. 377, 76 (2009).Google Scholar

  • [23]

    E. A. Ho, V. Vassileva, C. Allen, M. Piquette-Miller, J. Control. Release 104, 181 (2005).Google Scholar

  • [24]

    F. Sonvico, A. Cagnani, A. Rossi, S. Motta, M. T. Di Bari, F. Cavatorta, M. J. Alonso, A. Deriu, P. Colombo, Int. J. Pharm. 324, 67 (2006).Google Scholar

  • [25]

    A. M. Chuah, T. Kuroiwa, S. Ichikawa, I. Kobayashi, M. Nakajima, J. Food Sci. 74, N1 (2009).Google Scholar

  • [26]

    F. M. Goycoolea, A. Valle-Gallego, R. Stefani, B. Menchicchi, L. David, C. Rochas, M. J. Santander-OrtegA, M. J. Alonso, Colloid Polym. Sci. 290, 1423 (2012).Google Scholar

  • [27]

    P. Pereira, S. S. Pedrosa, A. Correia, C. F. Lima, M. P. Olmedo, Á. González-Fernández, M. Vilanova, F. M. Gama, Toxicol. Vitr. 29, 638 (2015).Google Scholar

  • [28]

    A. C. Mendes, C. Gorzelanny, N. Halter, S. W. Schneider, I. S. Chronakis, Int. J. Pharm. 510, 48 (2016).Google Scholar

  • [29]

    C. Gorzelanny, R. Kmeth, A. Obermeier, A. T. Bauer, N. Halter, K. Kümpel, M. F. Schneider, A. Wixforth, H. Gollwitzer, R. Burgkart, B. Stritzker, S. W. Schneider, Sci. Rep. 6, 22849 (2016).Google Scholar

  • [30]

    C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 9, 671 (2012).Google Scholar

  • [31]

    J. L. Espartero, I. Rashkov, S. M. Li, N. Manolova, M. Vert, Macromolecules, 9297, 3535 (1996).Google Scholar

  • [32]

    M. Lavertu, Z. Xia, A. N. Serreqi, M. Berrada, A. Rodrigues, D. Wang, M. D. Buschmann, A. Gupta, J. Pharm. Biomed. Anal. 32, 1149 (2003).Google Scholar

  • [33]

    Y. E. Shapiro, Prog. Polym. Sci. 36, 1184 (2011).Google Scholar

  • [34]

    A. C. Mendes, K. H. Smith, E. Tejeda-Montes, E. Engel, R. L. Reis, H. S. Azevedo, A. Mata, Adv. Funct. Mater. 23, 430 (2013).Google Scholar

  • [35]

    D. M. Small, Molecular Association in Biological and Related Systems 84, 31 (American Chemical Society, 1968).Google Scholar

  • [36]

    W. A. de Morais, M. R. Pereira, J. L. C. Fonseca, Carbohydr. Polym. 87, 2376 (2012).Google Scholar

  • [37]

    K. Yoshida, T. Yamaguchi, N. Osaka, H. Endo, M. Shibayama, Chem. Phys. 12, 3260 (2010).Google Scholar

  • [38]

    P. N. Pusey, W. Van Megen, Phys. A Stat. Mech. its Appl. 157, 705 (1989).Google Scholar

  • [39]

    T. Norisuye, M. Shibayama, R. Tamaki, Y. Chujo, Macromolecules 32, 1528 (1999).Google Scholar

  • [40]

    I. S. Chronakis, L. Piculell, J. Borgström, Carbohydr. Polym. 31, 215 (1996).Google Scholar

  • [41]

    F. Zhang, C. Hea, L. Cao, W. Feng, H. Wang, X. Moa, J. Wangd, Int. J. Biol. Macromol. 48, 474 (2011).Google Scholar

  • [42]

    S. D. Nath, C. Abueva, B. Kima, B. T. Lee, Carbohydr. Polym. 115, 160 (2015).Google Scholar

About the article

Published Online: 2016-11-02

Published in Print: 2016-09-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 905–916, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0708.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ketzasmin Terrón-Mejía, Evelin Martínez-Benavidez, Inocencio Higuera-Ciapara, Claudia Virués, Javier Hernández, Zaira Domínguez, Waldo Argüelles-Monal, Francisco Goycoolea, Roberto López-Rendón, and Armando Gama Goicochea
Nanomaterials, 2018, Volume 8, Number 6, Page 425
[2]
Jorge Alberto S. Moreno, Ana C. Mendes, Karen Stephansen, Christoph Engwer, Francisco M. Goycoolea, Anja Boisen, Line Hagner Nielsen, and Ioannis S. Chronakis
Carbohydrate Polymers, 2018
[3]
Elhamalsadat Shekarforoush, Ana Mendes, Vanessa Baj, Sophie Beeren, and Ioannis Chronakis
Molecules, 2017, Volume 22, Number 10, Page 1708

Comments (0)

Please log in or register to comment.
Log in