Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 88, Issue 9


New insights into the nature of the Cibacron brilliant red 3B-A – Chitosan interaction

Stefan Hoffmann / Juan Pablo Fuenzalida Werner / Ignacio Moreno-Villoslada
  • Corresponding author
  • Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisco M. Goycoolea
Published Online: 2016-10-18 | DOI: https://doi.org/10.1515/pac-2016-0712


Cibacron brilliant red 3B-A (CBR) has been introduced to determine chitosan (CS) concentrations in solution, and several studies applied it to measure chitosan content in pharmaceutical formulations. So far, studies have relied on the absorbance band shift to 570 nm to determine the extent of the CBR – CS interaction. In this study, we show that CBR forms micro- to nanometer sized aggregates with CS, depending on their charge ratio and that other photophysical changes in CBR are induced by this interaction. We found that, besides the bathochromic band shift, aggregation induces emission at 600 nm and emission quenching at 360 nm. We compared changes CS induced in absorbance and fluorescence emission of CBR with the CS monomer glucosamine and poly(allylamine) hydrochloride, which both contain amino groups, and found that similar but less intense photophysical changes also occur. Furthermore, CS-induced circular dichroism in CBR suggests a twisted, chiral structure of these aggregates that should match with the previously published in silico simulations of the structure of CS in solution. The low linear charge density of CS and its chiral conformation are considered responsible for the enhanced photophysical response of CBR interacting with the polycation.

Keywords: aggregation; chitosan; dye interaction; EUCHIS-12; ICCC-13; polyelectrolyte–dye interactions; polyelectrolytes

Article note:

A collection of invited papers based on presentations at the 12th Conference of the European Chitin Society (12th EUCHIS)/13th International Conference on Chitin and Chitosan (13th ICCC), Münster, Germany, 30 August – 2 September 2015.


  • [1]

    S. Dai. in Cationic Polym. Regen. Med. S. Samal, P. Debruel (Eds.), pp. 557–582, The Royal Society of Chemistry, Cambridge, United Kingdom (2015).Google Scholar

  • [2]

    A. F. Kotzé, H. L. Lueßen, B. J. de Leeuw, (A)Bert G de Boer, J. Coos Verhoef, H. E. Junginger. J. Control. Release 51, 35 (1998).Google Scholar

  • [3]

    M. Rinaudo. Prog. Polym. Sci. 31, 603 (2006).Google Scholar

  • [4]

    E. Fröhlich. Int. J. Nanomedicine 7, 5577 (2012).Google Scholar

  • [5]

    B. D. Gummow, G. A. F. Roberts. Die Makromol. Chemie 186, 1239 (1985).Google Scholar

  • [6]

    M. Schubert, D. Hamerman. J. Histochem. Cytochem. 4, 159 (1956).Google Scholar

  • [7]

    I. Moreno-Villoslada, J. P. Fuenzalida, G. Tripailaf, R. Araya-Hermosilla, G. D. C. Pizarro, O. G. Marambio, H. Nishide. J. Phys. Chem. B 114, 11983 (2010).Google Scholar

  • [8]

    I. Moreno-Villoslada, C. Torres-Gallegos, R. Araya-Hermosilla, H. Nishide. J. Phys. Chem. B 114, 4151 (2010).Google Scholar

  • [9]

    I. Moreno-Villoslada, C. Torres, F. González, T. Shibue, H. Nishide. Macromol. Chem. Phys. 210, 1167 (2009).Google Scholar

  • [10]

    M. Gómez-Tardajos, J. P. Pino-Pinto, C. Díaz-Soto, M. E. Flores, A. Gallardo, C. Elvira, H. Reinecke, H. Nishide, I. Moreno-Villoslada. Dye. Pigment. 99, 759 (2013).Google Scholar

  • [11]

    Roger W. Kugel. Structure-Property Relations in Polymers, American Chemical Society, Washington, DC (1993).Google Scholar

  • [12]

    E. E. Jelley. Nature 138, 1009 (1936).Google Scholar

  • [13]

    M. Kasha. Radiat. Res. 20, 55 (1963).Google Scholar

  • [14]

    T. Katoh, Y. Inagaki, R. Okazaki. Bull. Chem. Soc. Jpn. 70, 2279 (1997).Google Scholar

  • [15]

    A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Chem. Rev. 100, 1973 (2000).Google Scholar

  • [16]

    K. Patil, R. Pawar, P. Talap. Phys. Chem. Chem. Phys. 2, 4313 (2000).Google Scholar

  • [17]

    I. Willerich, H. Ritter, F. Gröhn. J. Phys. Chem. B 113, 3339 (2009).Google Scholar

  • [18]

    V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, T. Arbeloa López, I. López Arbeloa. J. Phys. Chem. B 108, 20030 (2004).Google Scholar

  • [19]

    R. N. Puri, R. Roskoski. Arch. Biochem. Biophys. 303, 288 (1993).Google Scholar

  • [20]

    S. Subramanian, P. D. Ross. Crit. Rev. Biochem. Mol. Biol. 16, 169 (1984).Google Scholar

  • [21]

    R. A. A. Muzzarelli. Anal. Biochem. 260, 255 (1998).Google Scholar

  • [22]

    B. Miralles, M. Mengíbar, R. Harris, A. Heras. Food Chem. 126, 1836 (2011).Google Scholar

  • [23]

    A. Mendelovits, T. Prat, Y. Gonen, G. Rytwoa, G. Rytwo, G. Rytwoa, G. Rytwo. Appl. Spectrosc. 66, 979 (2012).Google Scholar

  • [24]

    M. Wojdyr. J. Appl. Crystallogr. 43, 1126 (2010).Google Scholar

  • [25]

    C. Wischke, H.-H. Borchert. Carbohydr. Res. 341, 2978 (2006).Google Scholar

  • [26]

    M. Kasha, H. R. Rawls, M. Ashraf El-Bayoumi. Pure Appl. Chem. 11, 371 (1965).Google Scholar

  • [27]

    U. Rösch, S. Yao, R. Wortmann, F. Würthner. Angew. Chem. 118, 7184 (2006).Google Scholar

  • [28]

    J. Qian, P. Brister. US20120164742 A1 (28 June 2012).Google Scholar

  • [29]

    J. R. Lakowicz. Principles of Fluorescence Spectroscopy, Springer US, New York, USA (2006).Google Scholar

  • [30]

    J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu. Chem. Commun. 1740 (2001).Google Scholar

  • [31]

    M. Yang, D. Xu, W. Xi, L. Wang, J. Zheng, J. Huang, J. Zhang, H. Zhou, J. Wu, Y. Tian. J. Org. Chem. 78, 10344 (2013).Google Scholar

  • [32]

    M. C. Gather, S. H. Yun. Nat. Commun. 5, 5722 (2014).Google Scholar

  • [33]

    J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang. Adv. Mater. 26, 5429 (2014).Google Scholar

  • [34]

    Z. Wang, S. Chen, J. W. Y. Lam, W. Qin, R. T. K. Kwok, N. Xie, Q. Hu, B. Z. Tang. J. Am. Chem. Soc. 135, 8238 (2013).Google Scholar

  • [35]

    M. K. Pal, P. K. Pal. Die Makromol. Chemie, Rapid Commun. 9, 237 (1988).Google Scholar

  • [36]

    E. F. Franca, R. D. Lins, L. C. G. Freitas, T. P. Straatsma. J. Chem. Theory Comput. 4, 2141 (2008).Google Scholar

  • [37]

    E. F. Franca, L. C. G. Freitas, R. D. Lins. Biopolymers 95, 448 (2011).Google Scholar

  • [38]

    N. Harada, K. Nakanishi. Acc. Chem. Res. 5, 257 (1972).Google Scholar

  • [39]

    R. A. Garoff, E. A. Litzinger, R. E. Connor, I. Fishman, B. A. Armitage. Langmuir 18, 6330 (2002).Google Scholar

  • [40]

    K. Yamaoka, M. Takatsuki, K. Yaguchi, M. Miura. Bull. Chem. Soc. Jpn. 47, 611 (1974).Google Scholar

  • [41]

    Q. C. Jiao, Q. Liu, C. Sun, H. He. Talanta 48, 1095 (1999).Google Scholar

  • [42]

    M. Shirai, T. Nagatsuka, M. Tanaka. J. Polym. Sci. Polym. Chem. Ed. 15, 2083 (1977).Google Scholar

  • [43]

    M. K. Pal, M. Chaudhuri. Die Makromol. Chemie 133, 151 (1970).Google Scholar

  • [44]

    D. Horn, C. C. Heuck. J. Biol. Chem. 258, 1665 (1983).Google Scholar

About the article

Published Online: 2016-10-18

Published in Print: 2016-09-01

Citation Information: Pure and Applied Chemistry, Volume 88, Issue 9, Pages 891–904, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0712.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

José Catalán-Toledo, Ariel Nenen, Gabriel A. Vallejos, Felipe Oyarzun-Ampuero, Toshimichi Shibue, Hiroyuki Nishide, and Ignacio Moreno-Villoslada
Polymer, 2018
Enrica Chiesa, Rossella Dorati, Bice Conti, Tiziana Modena, Emanuela Cova, Federica Meloni, and Ida Genta
International Journal of Molecular Sciences, 2018, Volume 19, Number 8, Page 2310

Comments (0)

Please log in or register to comment.
Log in