Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 1

Issues

Mixed-ligand aminoalcohol-dicarboxylate copper(II) coordination polymers as catalysts for the oxidative functionalization of cyclic alkanes and alkenes

Marina V. Kirillova
  • Corresponding author
  • Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Polyana Tomé de Paiva
  • Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wagner A. Carvalho
  • Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dalmo Mandelli
  • Corresponding author
  • Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bangu, Santo André, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander M. Kirillov
  • Corresponding author
  • Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-28 | DOI: https://doi.org/10.1515/pac-2016-1012

Abstract

New copper(II) catalytic systems for the mild oxidative C–H functionalization of cycloalkanes and cycloalkenes were developed, which are based on a series of mixed-ligand aminoalcohol-dicarboxylate coordination polymers, namely [Cu2(μ-dmea)2(μ-nda)(H2O)2]n·2nH2O (1), [Cu2(μ-Hmdea)2(μ-nda)]n·2nH2O (2), and [Cu2(μ-Hbdea)2(μ-nda)]n·2nH2O (3) that bear slightly different dicopper(II) aminoalcoholate cores, as well as on a structurally distinct dicopper(II) [Cu2(H4etda)2(μ-nda)]·nda·4H2O (4) derivative [abbreviations: H2nda, 2,6-naphthalenedicarboxylic acid; Hdmea, N,N′-dimethylethanolamine; H2mdea, N-methyldiethanolamine; H2bdea, N-butyldiethanolamine; H4etda, N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine]. Compounds 14 act as homogeneous catalysts in the three types of model catalytic reactions that proceed in aqueous acetonitrile medium under mild conditions (50–60°C): (i) the oxidation of cyclohexane by hydrogen peroxide to cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone, (ii) the oxidation of cycloalkenes (cyclohexene, cyclooctene) by hydrogen peroxide to a mixture of different oxidation products, and (iii) the single-pot hydrocarboxylation of cycloalkanes (cyclopentane, cyclohexane, cycloheptane, cyclooctane) by carbon monoxide, water, and a peroxodisulfate oxidant into the corresponding cycloalkanecarboxylic acids. The catalyst and substrate scope as well as some mechanistic features were investigated; the highest catalytic activity of 14 was observed in the hydrocarboxylation of cycloalkanes, allowing to achieve up to 50% total product yields (based on substrate).

Keywords: alkanes; alkenes; C–H functionalization; coordination polymers; copper; homogeneous catalysis; hydrocarboxylation; oxidation; POC-16

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organic Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.

References

  • [1]

    A. E. Shilov, G. B. Shul’pin. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer Acad. Publ., Dordrecht (2000).Google Scholar

  • [2]

    Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed., Wiley-VCH, Weinheim (1999–2013).Google Scholar

  • [3]

    G. A. Olah, A. Molnar. Hydrocarbon Chemistry, Wiley, Hoboken, New Jersey (2003).Google Scholar

  • [4]

    P. J. Pérez (Ed.). Alkane C-H Activation by Single-Site Metal Catalysis, Springer, Dordrecht (2012).Google Scholar

  • [5]

    J. J. Li (Ed.). C-H Bond Activation in Organic Synthesis, CRC Press, Boca Raton (2015).Google Scholar

  • [6]

    D. Duprez, F. Cavani (Eds.). Handbook of Advanced Methods and Processes in Oxidation Catalysis: From Laboratory to Industry, World Scientific, Singapore (2014).Google Scholar

  • [7]

    А. А. Shteinman, J. Mol. Catal. A. Chem. 426, 305 (2017).CrossrefGoogle Scholar

  • [8]

    F. Roudesly, J. Oble, G. Poli. J. Mol. Catal. A. Chem. 426, 275 (2017).CrossrefGoogle Scholar

  • [9]

    G. B. Shul’pin, Catalysts 6, 50 (2016).CrossrefGoogle Scholar

  • [10]

    A. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro. Coord. Chem. Rev. 256, 2741 (2012).CrossrefGoogle Scholar

  • [11]

    S. S. Stahl, P. L. Alsters (Eds.). Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, Wiley, Weinheim (2016).Google Scholar

  • [12]

    K. D. Karlin, S. Itoh, S. Rokita (Eds.). Copper-Oxygen Chemistry, Wiley, Weinheim (2011).Google Scholar

  • [13]

    K. D. Karlin, Z. Tyeklar (Eds.). Bioinorganic Chemistry of Copper, Springer, Dordrecht (2012).Google Scholar

  • [14]

    R. A. Himes, K. D. Karlin. Curr. Opin. Chem. Biol. 13, 119 (2009).CrossrefGoogle Scholar

  • [15]

    R. L. Lieberman, A. C. Rosenzweig. Nature 434, 177 (2005).CrossrefGoogle Scholar

  • [16]

    R. S. Brissos, S. Garcia, A. Presa, P. Gamez. Comments Inorg. Chem. 32, 219 (2011).CrossrefGoogle Scholar

  • [17]

    P. Gamez, P. G. Aubel, W. L. Driessen, J. Reedijk. Chem. Soc. Rev. 30, 376 (2001).CrossrefGoogle Scholar

  • [18]

    A. A. Shteinman. J. Inorg. Biochem. 59, 408 (1995).CrossrefGoogle Scholar

  • [19]

    A. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro. Adv. Inorg. Chem. 65, 1 (2013).CrossrefGoogle Scholar

  • [20]

    S. S. P. Dias, M. V. Kirillova, V. André, J. Kłak, A. M. Kirillov. Inorg. Chem. Front. 2, 525 (2015).CrossrefGoogle Scholar

  • [21]

    T. A. Fernandes, C. I. M. Santos, V. André, J. Kłak, M. V. Kirillova, A. M. Kirillov. Inorg. Chem. 55, 125 (2016).CrossrefGoogle Scholar

  • [22]

    S. S. P. Dias, M. V. Kirillova, V. André, J. Kłak, A. M. Kirillov. Inorg. Chem. 54, 5204 (2015).CrossrefGoogle Scholar

  • [23]

    A. M. Kirillov, J. A. S. Coelho, M. V. Kirillova, M. F. C. G. da Silva, D. S. Nesterov, K. R. Gruenwald, M. Haukka, A. J. L. Pombeiro. Inorg. Chem. 49, 6390 (2010).CrossrefGoogle Scholar

  • [24]

    S. S. P. Dias, V. André, J. Kłak, M. T. Duarte, A. M. Kirillov. Cryst. Growth Des. 14, 3398 (2014).CrossrefGoogle Scholar

  • [25]

    G. B. Shul’pin. J. Mol. Catal. A: Chem. 189, 39 (2002).CrossrefGoogle Scholar

  • [26]

    G. B. Shul’pin. C. R. Chim. 6, 163 (2003).CrossrefGoogle Scholar

  • [27]

    G. B. Shul’pin. Mini-Rev. Org. Chem. 6, 95 (2009).CrossrefGoogle Scholar

  • [28]

    T. A. Fernandes, V. André, A. M. Kirillov, M. V. Kirillova. J. Mol. Catal. A. Chem. 426, 357 (2017).CrossrefGoogle Scholar

  • [29]

    M. V. Kirillova, A. M. Kirillov, M. L. Kuznetsov, J. A. L. Silva, J. J. R. Fraústo da Silva, A. J. L. Pombeiro. Chem. Commun. 2353 (2009).Google Scholar

  • [30]

    M. V. Kirillova, A. M. Kirillov, A. N. C. Martins, C. Graiff, A. Tiripicchio, A. J. L. Pombeiro. Inorg. Chem. 51, 5224 (2012).CrossrefGoogle Scholar

  • [31]

    M. V. Kirillova, A. M. Kirillov, A. J. L. Pombeiro. Chem. Eur. J. 16, 9485 (2010).CrossrefGoogle Scholar

  • [32]

    U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Pires. Appl. Catal. A: Gen. 211, 1 (2001).CrossrefGoogle Scholar

  • [33]

    A. M. Kirillov, M. Haukka, M. F. C. G. da Silva, A. J. L. Pombeiro. Eur. J. Inorg. Chem. 2071 (2005).Google Scholar

  • [34]

    A. M. Kirillov, G. B. Shul’pin. Coord. Chem. Rev. 257, 732 (2013).CrossrefGoogle Scholar

  • [35]

    G. B. Shul’pin. Dalton Trans. 42, 12794 (2013).CrossrefGoogle Scholar

  • [36]

    G. B. Shul’pin. Org. Biomol. Chem. 8, 4217 (2010).CrossrefGoogle Scholar

  • [37]

    S. Gupta, M. V. Kirillova, M. F. C. G. da Silva, A. J. L. Pombeiro, A. M. Kirillov. Inorg. Chem. 52, 8601 (2013).CrossrefGoogle Scholar

  • [38]

    T. Liu, H. Cheng, W. Lin, C. Zhang, Y. Yu, F. Zhao. Catalysts 6, 24 (2016).CrossrefGoogle Scholar

  • [39]

    B. McAteer, N. Beattie, D. T. Richens. Inorg. Chem. Commun. 35, 284 (2013).CrossrefGoogle Scholar

  • [40]

    U. Schuchardt, M. C. Guerreiro, G. B. Shul'pin. Russ. Chem. Bull. 47, 247 (1998).CrossrefGoogle Scholar

  • [41]

    B. Das, A. Al-Hunaiti, M. Haukka, S. Demeshko, S. Meyer, A. A. Shteinman, F. Meyer, T. Repo, E. Nordlander, Eur. J. Inorg. Chem. 21, 3590 (2015).Google Scholar

  • [42]

    A. W. Ray, C. A. Taatjes, O. Welz, D. L. Osborn, G. Meloni, J. Phys. Chem. A. 116, 6720 (2012).CrossrefGoogle Scholar

  • [43]

    M. L. Kuznetsov, B. G. M. Rocha, A. J. L. Pombeiro, G. B. Shul’pin. ACS Catal. 5, 3823 (2015).CrossrefGoogle Scholar

  • [44]

    A. S. Novikov, M. L. Kuznetsov, B. G. M. Rocha, A. J. L. Pombeiro, G. B. Shul'pin. Catal. Sci. Technol. 6, 1343 (2016).CrossrefGoogle Scholar

  • [45]

    M. Colladon, A. Scarso, P. Sgarbossa, R. A. Michelin, G. Strukul. J. Am. Chem. Soc. 129, 7680 (2007).CrossrefGoogle Scholar

  • [46]

    M. Colladon, A. Scarso, P. Sgarbossa, R. A. Michelin, G. Strukul. J. Am. Chem. Soc. 128, 14006 (2006).CrossrefGoogle Scholar

  • [47]

    G. B. Payne, C. W. Smith. J. Org. Chem. 22, 1682 (1957).CrossrefGoogle Scholar

  • [48]

    I. W. C. E. Arends, R. A. Sheldon. Topics Catal. 19, 133 (2002).CrossrefGoogle Scholar

  • [49]

    A. M. Kirillov, Y. Y. Karabach, M. V. Kirillova, M. Haukka, A. J. L. Pombeiro. Cryst. Growth Des. 12, 1069 (2012).CrossrefGoogle Scholar

  • [50]

    A. M. Kirillov, Y. Y. Karabach, M. V. Kirillova, M. Haukka, A. J. L. Pombeiro. Dalton Trans. 40, 6378 (2011).CrossrefGoogle Scholar

  • [51]

    F. Joo, Aqueous Organometallic Catalysis, Springer, Dordrecht (2006).Google Scholar

  • [52]

    K. U. Ingold, Aldrichim. Acta 22, 69 (1989).Google Scholar

  • [53]

    M. V. Kirillova, C. I. M. Santos, W. Wu, Y. Tang, A. M. Kirillov. J. Mol. Catal. A. Chem. 426, 343 (2017)CrossrefGoogle Scholar

  • [54]

    F.R. Hartley. Supported Metal Complexes: A New Generation of Catalysts, Springer, Dordrecht (2012).Google Scholar

About the article

Published Online: 2016-12-28

Published in Print: 2017-01-01


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 1, Pages 61–73, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1012.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hakan Ünver and Ibrahim Kani
Journal of Chemical Sciences, 2018, Volume 130, Number 4
[2]
Katarzyna Czerwińska, Barbara Machura, Slawomir Kula, Stanisław Krompiec, Karol Erfurt, Catarina Roma-Rodrigues, Alexandra R. Fernandes, Lidia S. Shul'pina, Nikolay S. Ikonnikov, and Georgiy B. Shul'pin
Dalton Trans., 2017, Volume 46, Number 29, Page 9591

Comments (0)

Please log in or register to comment.
Log in