Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 89, Issue 1


Hybrid nanocomposites made of diol-modified silanes and nanostructured calcium hydroxide. Applications to Alum-treated wood

Fabrizio Andriulo
  • Corresponding author
  • Department of Chemistry Ugo Schiff and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rodorico Giorgi
  • Department of Chemistry Ugo Schiff and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Calin Constantin Steindal / Hartmut Kutzke / Susan Braovac / Piero Baglioni
  • Department of Chemistry Ugo Schiff and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/pac-2016-1014


The alum-treated Viking Age archaeological wooden objects from the Oseberg find have undergone extensive chemical deterioration due to the original conservation treatment, based on alum salts (KAl(SO4)2·12H2O), done in the early 1900s. Today, the artifacts are highly acidic (pH≤2) and fragile; in some cases wood has almost completely lost its structural integrity. Research on conservation methods for these finds is currently underway. In the present study, organic/inorganic multi-functional ‘hybrid systems’ – using propylene glycol modified TEOS and alkaline nanoparticles (Ca(OH)2) – have been engineered to deacidify and consolidate alum-treated wood in a single step. The advantage of using silicon monomer and nano-materials as a starting point resides in their ease of penetration into the wood structure, where silicon monomers subsequently undergo polymerization. Treated samples were investigated using thermal analysis (DTG), X-Ray Diffraction (XRD), infrared spectroscopy (ATR-FTIR), SEM/EDX and Gas Chromatography Mass Spectroscopy (GC-MS). Results suggest that in addition to consolidating the wood, alkoxysilanes could act as a bridging agent between remaining lignin and calcium hydroxide nanoparticles.

Keywords: alkaline nanoparticles; alum salt; archaeological wood; hybrid systems; in situ polymerization; Oseberg finds; pH control; POC-16

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organics Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.


  • [1]

    S. Braovac, H. Kutzke. J. Cult. Herit. 13, 203 (2012).CrossrefGoogle Scholar

  • [2]

    S. Braovac, D. Tamburini, J. J. Łucejko, C. McQueen, H. Kutzke, M P. Colombini. Microchem. J. 124, 368 (2016).CrossrefGoogle Scholar

  • [3]

    F. Andriulo, S. Braovac, H. Kutzke, R. Giorgi, P. Baglioni. Appl. Phys. A. 122, 322 (2016).CrossrefGoogle Scholar

  • [4]

    G. Telysheva, T. Dizhbite, D. Evtuguin, N. Mironova-Ulmane, G. Lebedeva, A. Andersone, O. Bikovens, J. Chirkovaa, L. Belkova. Scripta Mater. 60, 687 (2009).CrossrefGoogle Scholar

  • [5]

    C. J. Brinker, G. W. Scherer. Sol-Gel Science The Physics and Chemistry of Sol Gel Processing. Edited by Academic press. Inc., San Diego, CA (1990).Google Scholar

  • [6]

    K. Yoshizawa, H. Kato, M. Kakihana. J. Mater. Chem. 22, 17272 (2012).CrossrefGoogle Scholar

  • [7]

    Y. Hu, J. D. Mackenzie. J. Mat. Sci. 27, 4415 (1992).CrossrefGoogle Scholar

  • [8]

    Y. Liu, A. Wang, J. J. Freeman. Raman, MIR, and NIR Spectroscopic Study of Calcium Sulfates: Gypsum, Bassanite, and Anhydrite, 40th Lunar and Planetary Science Conference, (2009).Google Scholar

  • [9]

    D. V. Quangi, J. K. Park, J. K. Kim, G. Elineema, G. N. Shao, J. E. Lee, H. T. Kim. Resources Processing. 59, 33 (2012).CrossrefGoogle Scholar

  • [10]

    P. Saravanapavan, L. L. Hench. J. Non – Cryst. Solids. 318, 1 (2003).CrossrefGoogle Scholar

  • [11]

    A. Martinez, I. Izquierdo-Barba, M. Vallet-Regi. Chem. Mater. 12, 3080 (2000).CrossrefGoogle Scholar

  • [12]

    H.Yoshino, K. Kamiya, H. Nasu. J. Non-Cryst. Solids. 126, 68 (1990).CrossrefGoogle Scholar

  • [13]

    D. Baciu, J. Simitzis. J. Optoelectron. Adv. M. 9, 3320 (2007).Google Scholar

  • [14]

    N. P. Bansal. Influence of Several Metal Ions on the Gelation Activation Energy of Silicon Tetraethoxide. 90th Annual Meeting of the American Ceramic Society Cincinnati, Ohio (1988).Google Scholar

  • [15]

    B. J. Saikia, G. Parthasarathy. J. Mod. Phys. 1, 206 (2010).CrossrefGoogle Scholar

  • [16]

    S. Musić, N. Filipović-Vinceković, L. Sekovanić. Braz. J. Chem. Eng. 28, 89 (2011).CrossrefGoogle Scholar

  • [17]

    G. Poggi, N. Toccafondi, L. N. Melita, J. C. Knowles, L. Bozec, R. Giorgi, P. Baglioni, Appl. Phys. A. 114, 685 (2014).CrossrefGoogle Scholar

  • [18]

    R. Giorgi, D. Chelazzi, P. Baglioni. Langmuir. 21, 10743 (2005).CrossrefGoogle Scholar

  • [19]

    L.T. Zhuravlev. Colloids and Surfaces A: Physicochem. Eng. Aspects. 173, 1 (2000).CrossrefGoogle Scholar

  • [20]

    L. Gasparovic, Z. Korenova, L. Jelemensky. Chemical Pap. 64, 174 (2010).Google Scholar

  • [21]

    V. Strezov, B. Moghtaderi, J. Lucas. J. Therm. Anal. Calorim. 72, 1041 (2003).CrossrefGoogle Scholar

  • [22]

    K. Slopiecka, P. Bartocci, F. Fantozzi. Thermogravimetric analysis and Kinetic study of poplar wood pyrolysis. Third International Conference on Applied Energy, pp. 1687–1698, Perugia, Italy (2011).Google Scholar

  • [23]

    H. A. Shnawa. Mater. Sci. App. 2, 692 (2011).Google Scholar

  • [24]

    C. W. Smith. Proceedings of the 8th ICOM-CC Working Group on Wet Organic Archaeological Materials Conference, Vol. 8, pp. 612, Stockholm, Sweden (2001).Google Scholar

About the article

Published Online: 2017-01-20

Published in Print: 2017-01-01

Citation Information: Pure and Applied Chemistry, Volume 89, Issue 1, Pages 29–39, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1014.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Susan Braovac, Caitlin M. A. McQueen, Malin Sahlstedt, Hartmut Kutzke, Jeannette J. Łucejko, and Torunn Klokkernes
Heritage Science, 2018, Volume 6, Number 1
Magdalena Broda, Jerzy Majka, Wiesław Olek, and Bartłomiej Mazela
International Biodeterioration & Biodegradation, 2018, Volume 133, Page 34

Comments (0)

Please log in or register to comment.
Log in