Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 89, Issue 1


Microwave energy assisted carbonization of nanostructured conducting polymers for their potential use in energy storage applications

Selcuk Poyraz
  • Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
  • Department of Textile Engineering, Corlu Faculty of Engineering, Namik Kemal University, Corlu, Tekirdag 59860, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marissa Flogel / Zhen Liu
  • Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
  • Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
  • Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-4111, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinyu Zhang
  • Corresponding author
  • Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA, Tel.: +1-334-844-5439, Fax: +1-334-844-4068
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-25 | DOI: https://doi.org/10.1515/pac-2016-1109


Three well-established one-step approaches, namely, conducting polymer (CP) nanofiber (NF) synthesis by NF seeding, CP nanoclip (NC) synthesis by oxidative template, and microwave (MW) energy-assisted carbonization were systematically combined to prepare carbonaceous nanostructures from CPs, with great potential as the active material for energy storage purposes. Polypyrrole (PPy), as one of the most well-known and commonly studied members of the CP family was prepared in both NF and NC forms, as the sacrificial carbonization precursor, for different property comparison purposes. Due to conducting polymers’ high electron mobility and easily exciting nature under MW irradiation, both PPy NF and NC samples had vigorously interacted with MWs. The as-obtained carbonaceous samples from such interactions exhibited high thermal stabilities, competitive specific capacitance values and long-term stable electrochemical cyclic performances, which are crucial for the active materials used in energy storage applications. Thus, it is believed that, this well-established and well-studied process combination will dominate the large-scale manufacturing of the carbon-based, active energy storage materials from CPs.

Keywords: carbonization; conducting polymers; energy storage; microwave energy; nanostructures; POC-16

Article note:

A collection of invited papers based on presentations at the 16th International Conference on Polymers and Organics Chemistry (POC-16), Hersonissos (near Heraklion), Crete, Greece, 13–16 June 2016.


  • [1]

    L. Qie, W. M. Chen, Z. H. Wang, Q. G. Shao, X. Li, L. X. Yuan, X. L. Hu, W. X. Zhang, Y. H. Huang. Adv. Mater. 24, 2047 (2012).Google Scholar

  • [2]

    S. Xin, Y. G. Guo, L. J. Wan. Acc. Chem. Res. 45, 1759 (2012).Google Scholar

  • [3]

    M. H. Wu, J. Chen, C. Wang, F. Q. Wang, B. L. Yi. Electrochim. Acta 105, 462 (2013).Google Scholar

  • [4]

    C. de las Casas, W. Z. Li. J. Power Sourc. 208, 74 (2012).Google Scholar

  • [5]

    Z. H. Wang, X. Q. Xiong, L. Qie, Y. H. Huang. Electrochim. Acta 106, 320 (2013).Google Scholar

  • [6]

    J. Yang, X. Y. Zhou, J. Li, Y. L. Zou, J. J. Tang. Mater. Chem. Phys. 135, 445 (2012).Google Scholar

  • [7]

    X. Y. Zhou, J. J. Tang, J. Yang, J. Xie, B. Huang. J. Mater. Chem. A 1, 5037 (2013).Google Scholar

  • [8]

    J. H. Zhu, S. Pallavkar, M. J. Chen, N. Yerra, Z. P. Luo, H. A. Colorado, H. F. Lin, N. Haldolaarachchige, A. Khasanov, T. C. Ho, D. P. Young, S. Y. Wei, Z. H. Guo. Chem. Commun. 49, 258 (2013).Google Scholar

  • [9]

    M. M. Titirici, M. Antonietti. Chem. Soc. Rev. 39, 103 (2010).Google Scholar

  • [10]

    U. Riaz, S. M. Ashraf. RSC Adv. 4, 47153 (2014).Google Scholar

  • [11]

    U. Riaz, S. M. Ashraf. Appl. Clay Sci. 52, 179 (2011).Google Scholar

  • [12]

    X. Y. Zhang, S. K. Manohar. J. Am. Chem. Soc. 126, 12714 (2004).Google Scholar

  • [13]

    Z. Liu, Y. Liu, S. Poyraz, X. Y. Zhang. Chem. Commun. 47, 4421 (2011).Google Scholar

  • [14]

    Z. Liu, X. Y. Zhang, S. Poyraz, S. P. Surwade, S. K. Manohar. J. Am. Chem. Soc. 132, 13158 (2010).Google Scholar

  • [15]

    X. Y. Zhang, S. K. Manohar. Chem. Commun. 23, 2477 (2006).Google Scholar

  • [16]

    X. Y. Zhang, Z. Liu. Nanoscale 4, 707 (2012).Google Scholar

  • [17]

    Y. Liu, N. Lu, S. Poyraz, X. L. Wang, Y. J. Yu, J. Scott, J. Smith, M. J. Kim, X. Y. Zhang. Nanoscale 5, 3872 (2013).Google Scholar

  • [18]

    Z. Liu, Y. Liu, L. Zhang, S. Poyraz, N. Lu, M. Kim, J. Smith, X. L. Wang, Y. J. Yu, X. Y. Zhang. Nanotechnology 23, 335603 (2012).Google Scholar

  • [19]

    Z. Liu, S. Poyraz, Y. Liu, X. Y. Zhang. Nanoscale 4, 106 (2012).Google Scholar

  • [20]

    S. Poyraz, L. Zhang, A. Schroder, X. Y. Zhang. ACS Appl. Mater. Interfaces 7, 22469 (2015).Google Scholar

  • [21]

    U. Riaz, S. M. Ashraf, M. Aqib. Arab. J. Chem. 7, 79 (2014).Google Scholar

  • [22]

    X. Y. Zhang, S. K. Manohar. J. Am. Chem. Soc. 127, 14156 (2005).Google Scholar

  • [23]

    F. D. Han, Y. J. Bai, R. Liu, B. Yao, Y. X. Qi, N. Lun, J. X. Zhang. Adv. Energy Mater. 1, 798 (2011).Google Scholar

  • [24]

    M. A. Chougule, S. G. Pawar, P. R. Godse, R. N. Mulik, S. Sen, V. B. Patil. Soft Nanosci. Lett. 1, 6 (2011).Google Scholar

  • [25]

    H. Shigi, M. Kishimoto, H. Yakabe, B. Deore, T. Nagaoka. Anal. Sci. 18, 41 (2002).Google Scholar

  • [26]

    P. Y. Li, J. C. Deng, Y. Li, W. Liang, K. Wang, L. T. Kang, S. Z. Zeng, S. H. Yin, Z. G. Zhao, X. G. Liu, Y. Z. Yang, F. Gao. J. Alloys Compd. 590, 318 (2014).Google Scholar

About the article

Published Online: 2017-02-25

Published in Print: 2017-01-01

Citation Information: Pure and Applied Chemistry, Volume 89, Issue 1, Pages 173–182, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1109.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Selcuk Poyraz, Jonathan Cook, Zhen Liu, Lin Zhang, Amit Nautiyal, Britta Hohmann, Solveig Klamt, and Xinyu Zhang
Journal of Materials Science, 2018

Comments (0)

Please log in or register to comment.
Log in