Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 5

Issues

Numerical simulations of CO2 sequestration in basaltic rock formations: challenges for optimizing mineral-fluid reactions

Alexander P. Gysi
  • Corresponding author
  • Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, 80401 Golden, CO, USA, Tel.: +1 303 2733828
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/pac-2016-1016

Abstract

Numerical simulations were carried out for determining the chemical reactions relevant for the sequestration of CO2 in basaltic rock formations. The mineralogy of natural geological systems consists of silicate minerals such as the phyllosilicates and zeolites that form complex solid solutions. Using the GEMS code package based on Gibbs energy minimization, combined with the new MINES database, we can now simulate the solubility of these multicomponent and multisite mineral solid solutions in basaltic rocks. This study explores the varying effects of CO2 partial pressures, basaltic glass dissolution kinetics and reaction time on the complex chemistry of the overall CO2-water-basalt reaction path. The simulations indicate four reaction progress stages with the competing reactions between smectites (di- and trioctahedral) and Ca-Fe-Mg-carbonates controlling the amount of CO2 mineralized. A better understanding of these key mineral-fluid reactions and improvement of their thermodynamic models is critical for making more acurate predictive calculations. This comprises the basis for extending the simulations to reactive transport models, and for the assessment of the feasibility of long-term CO2 storage in basaltic rock formations.

This article offers supplementary material which is provided at the end of the article.

Keywords: chemical thermodynamics; geochemistry; ISSP-17; modeling; multicomponent reactions; solubility; solution equilibria

Article note:

A collection of invited papers based on presentations at the International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-17), Geneva, 24–29 July 2016.

References

  • [1]

    E. H. Oelkers, S. R. Gislason, J. Matter. Elements. 4, 333 (2008).Google Scholar

  • [2]

    S. R. Gislason, E. H. Oelkers. Science 344, 373 (2014).Google Scholar

  • [3]

    J. M. Matter, P. B. Kelemen. Nat. Geosci. 2, 837 (2009).Google Scholar

  • [4]

    B. P. McGrail, H. T. Schaef, A. M. Ho, Y.-J. Chien, J. J. Dooley, C. L. Davidson. J. Geophys. Res. 111, 1 (2006).Google Scholar

  • [5]

    J. M. Matter, W. S. Broecker, M. Stute, S. R. Gislason, E. H. Oelkers, A. Stefánsson, D. Wolff-Boenisch, E. Gunnlaugsson, G. Axelsson, G. Björnsson. Energy Procedia. 1, 3641 (2009).Google Scholar

  • [6]

    J. M. Matter, M. Stute, S. Ó. Snaebjörnsdottir, E. H. Oelkers, S. R. Gislason, E. S. Aradottir, B. Sigfusson, I. Gunnarsson, H. Sigurdardottir, E. Gunnlaugsson, G. Axelsson, H. A. Alfredsson, D. Wolff-Boenisch, K. Mesfin, D. Fernandez de la Reguera Taya, J. Hall, K. Dideriksen, W. S. Broecker. Science 352, 1312 (2016).Google Scholar

  • [7]

    P. S. Neuhoff, T. Fridriksson, D. K. Bird. Am. J. Sci. 299, 467 (1999).Google Scholar

  • [8]

    K. L. Rogers, P. S. Neuhoff, A. K. Pedersen, D. K. Bird. Lithos. 92, 55 (2006).Google Scholar

  • [9]

    P. S. Neuhoff, K. L. Rogers, L. S. Stannius, D. K. Bird, A. K. Pedersen. Lithos. 92, 33 (2006).Google Scholar

  • [10]

    A. P. Gysi, A. Stefánsson. Geochim. Cosmochim. Acta. 81, 129 (2012).Google Scholar

  • [11]

    A. P. Gysi, A. Stefánsson. Chem. Geol. 306307, 146 (2012).Google Scholar

  • [12]

    T. H. Van Pham, P. Aagaard, H. Hellevang. Geochem. Trans. 13, 5 (2012).Google Scholar

  • [13]

    A. P. Gysi, A. Stefánsson. Geochim. Cosmochim. Acta 75, 4728 (2011).Google Scholar

  • [14]

    E. S. P. Aradóttir, E. L. Sonnenthal, G. Björnsson, H. Jónsson. Int. J. Greenh. Gas Control. 9, 24 (2012).Google Scholar

  • [15]

    D. L. Parkhurst, C. A. J. Appelo. U. S. Geol. Surv. Tech. Meth. A43, 497 (2013).Google Scholar

  • [16]

    T. Xu, N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng, K. Pruess. Comput. Geosci. 37, 763 (2011).Google Scholar

  • [17]

    E. S. P. Aradóttir, E. L. Sonnenthal, H. Jónsson. Chem. Geol. 304305, 26 (2012).Google Scholar

  • [18]

    K. M. Krupka, K. J. Cantrell, B. P. McGrail. U.S. Department of Energy report PNNL-19766 (2010).Google Scholar

  • [19]

    C. Steefel, D. DePaolo, P. Lichtner. Earth Planet. Sci. Lett. 240, 539 (2005).Google Scholar

  • [20]

    H. Helgeson, R. Garrels, F. MacKenzie. Geochim. Cosmochim. Acta. 33, 455 (1969).Google Scholar

  • [21]

    C. Zhu, P. Lu, Z. Zheng, J. Ganor. Geochim. Cosmochim. Acta. 74, 3963 (2010).Google Scholar

  • [22]

    R. M. Garrels. Genesis of Some Ground Waters from Igneous Rocks, Wiley, New York (1967).Google Scholar

  • [23]

    H. Helgeson. Geochim. Cosmochim. Acta. 32, 853 (1968).Google Scholar

  • [24]

    D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers, C. V. Putnis. Geochim. Cosmochim. Acta. 68, 4843 (2004).Google Scholar

  • [25]

    S. R. Gislason, E. H. Oelkers. Geochim. Cosmochim. Acta. 67, 3817 (2003).Google Scholar

  • [26]

    L. Marini. Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier, Amsterdam (2007).Google Scholar

  • [27]

    V. Daux, C. Guy, T. Advocat, J.-L. Crovisier, P. Stille. Chem. Geol. 142, 109 (1997).Google Scholar

  • [28]

    G. Berger, C. Claparols, C. Guy, V. Daux. Geochim. Cosmochim. Acta. 58, 4875 (1994).Google Scholar

  • [29]

    P. Aagaard, H. C. Helgeson. Am. J. Sci. 282, 237 (1982).Google Scholar

  • [30]

    D. A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kosakowski, F. F. Hingerl, K. V. Chudnenko, U. R. Berner. Comput. Geosci. 17, 1 (2013).Google Scholar

  • [31]

    A. P. Gysi, A. Stefánsson. Chem. Geol. 306–307, 10 (2012).Google Scholar

  • [32]

    G. J. Stockmann, D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers. Chem. Geol. 284, 306 (2011).Google Scholar

  • [33]

    A. P. Gysi, A. Stefánsson. Mineral. Mag. 72, 55 (2008).Google Scholar

  • [34]

    T. Holland, R. Powell. J. Metamorph. Geol. 16, 309 (1998).Google Scholar

  • [35]

    R. A. Robie, B. S. Hemingway. U. S. Geol. Surv. Bull. 2131, 458 (1995).Google Scholar

  • [36]

    D. A. Sverjensky, E. L. Shock, H. C. Helgeson. Geochim. Cosmochim. Acta. 61, 1359 (1997).Google Scholar

  • [37]

    J. C. Tanger, H. C. Helgeson. Am. J. Sci. 288, 19 (1988).Google Scholar

  • [38]

    H. C. Helgeson, D. H. Kirkham, G. C. Flowers. Am. J. Sci. 281, 1249 (1981).Google Scholar

  • [39]

    E. L. Shock, H. C. Helgeson, D. A. Sverjensky. Geochim. Cosmochim. Acta. 53, 2157 (1989).Google Scholar

  • [40]

    J. W. Johnson, E. H. Oelkers, H. C. Helgeson. Comput. Geosci. 18, 899 (1992).Google Scholar

  • [41]

    G. D. Miron, T. Wagner, D. A. Kulik, C. A. Heinrich. Geochim. Cosmochim. Acta. 187, 41 (2016).Google Scholar

  • [42]

    G. D. Miron, D. A. Kulik, S. V. Dmytrieva, T. Wagner. Appl. Geochem. 55, 28 (2015).Google Scholar

  • [43]

    B. Tagirov, J. Schott. Geochim. Cosmochim. Acta. 65, 3965 (2001).Google Scholar

  • [44]

    D. A. Palmer, P. Bénézeth, D. J. Wesolowski. Geochim. Cosmochim. Acta. 65, 2081 (2001).Google Scholar

  • [45]

    P. Bénézeth, D. A. Palmer, D. J. Wesolowski. Geochim. Cosmochim. Acta. 65, 2097 (2001).Google Scholar

  • [46]

    P. S. Neuhoff, thesis, Stanford University (2000).Google Scholar

  • [47]

    T. Wagner, D. A. Kulik, F. F. Hingerl, S. V. Dmytrieva. Can. Mineral. 50, 1173 (2012).Google Scholar

  • [48]

    R. A. Robinson, R. H. Stokes. Electrolyte solutions, Butterworths, London (1968).Google Scholar

  • [49]

    H. C. Helgeson, D. H. Kirkham. Am. J. Sci. 274, 1199 (1974).Google Scholar

  • [50]

    R. Stryjek, J. H. Vera. Can. J. Chem. Eng. 64, 323 (1986).Google Scholar

  • [51]

    P. Proust, J. H. Vera. Can. J. Chem. Eng. 67, 170 (1989).Google Scholar

  • [52]

    J. A. Chermak, J. D. Rimstidt. Am. Mineral. 74, 1023 (1989).Google Scholar

  • [53]

    T. J. B. Holland, Am. Mineral. 74, 5 (1989).Google Scholar

  • [54]

    R. Berman, T. Brown. Contrib. Mineral. Petrol. 89, 168 (1985).Google Scholar

  • [55]

    D. Wolff-Boenisch. Energy Procedia. 4, 3738 (2011).Google Scholar

  • [56]

    G. D. Saldi, D. Daval, G. Morvan, K. G. Knauss. Geochim. Cosmochim. Acta. 118, 157 (2013).Google Scholar

  • [57]

    G. D. Saldi, J. Schott, O. S. Pokrovsky, Q. Gautier, E. H. Oelkers. Geochim. Cosmochim. Acta. 83, 93 (2012).Google Scholar

  • [58]

    O. S. Pokrovsky, S. V. Golubev, J. Schott, A. Castillo. Chem. Geol. 260, 317 (2009).Google Scholar

  • [59]

    H. Hellevang, V. T. H. Pham, P. Aagaard. Int. J. Greenh. Gas Control. 15, 3 (2013).Google Scholar

  • [60]

    A. F. White, S. L. Brantley. Chem. Geol. 202, 479 (2003).Google Scholar

  • [61]

    C. S. Romanek, C. Jiménez-López, A. R. Navarro, M. Sanchez-Román, N. Sahai, M. Coleman. Geochim. Cosmochim. Acta. 73, 5361 (2009).Google Scholar

  • [62]

    C. M. Bethke. Geochemical and Biogeochemical Reaction Modeling, Cambridge University Press, New York (2007).Google Scholar

  • [63]

    I. K. Karpov, K. V. Chudnenko, D. A. Kulik, O. V. Avchenko, V. A. Bychinskii. Geochemistry Int. 39, 1108 (2001).Google Scholar

  • [64]

    A. M. M. Leal, D. A. Kulik, G. Kosakowski. Adv. Water Resour. 88, 231 (2016).Google Scholar

  • [65]

    A. M. M. Leal, D. A. Kulik, G. Kosakowski, M. O. Saar. Adv. Water Resour. 96, 405 (2016).Google Scholar

  • [66]

    O. Vidal, B. Dubacq. Geochim. Cosmochim. Acta 731, 6544 (2009).Google Scholar

  • [67]

    B. M. J. Thien, G. Kosakowski, D. A. Kulik. Geotherm. Energy. 3, 11 (2015).Google Scholar

  • [68]

    J. L. Crovisier, V. Daux. Chem. Geol. 84, 261 (1990).Google Scholar

  • [69]

    S. Gudbrandsson, D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers. Geochim. Cosmochim. Acta. 75, 5496 (2011).Google Scholar

About the article

Published Online: 2017-04-19

Published in Print: 2017-05-01


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 5, Pages 581–596, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1016.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Ingvi Gunnarsson, Edda S. Aradóttir, Eric H. Oelkers, Deirdre E. Clark, Magnús Þór Arnarson, Bergur Sigfússon, Sandra Ó. Snæbjörnsdóttir, Juerg M. Matter, Martin Stute, Bjarni M. Júlíusson, and Sigurður R. Gíslason
International Journal of Greenhouse Gas Control, 2018, Volume 79, Page 117
[3]
Alexander P. Gysi, Daniel Harlov, and George D. Miron
Geochimica et Cosmochimica Acta, 2018

Comments (0)

Please log in or register to comment.
Log in