Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 89, Issue 5


Linking environmental observations and solid solution thermodynamic modeling: the case of Ba- and Sr-rich micropearls in Lake Geneva

Bruno Thien
  • Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen, Switzerland
  • Fluid and Mineral Resources Group, ETH, 8092 Zürich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agathe Martignier / Jean-Michel Jaquet / Montserrat Filella
Published Online: 2017-04-25 | DOI: https://doi.org/10.1515/pac-2017-0205


Intracellular inclusions of amorphous Ba- and Sr-rich calcium carbonates – referred to as “micropearls”– have recently been detected in Lake Geneva. These micropearls are formed under conditions of pronounced Ba and Sr undersaturation in the lake waters. Their formation can be explained by the ability of certain microorganisms to preconcentrate these trace elements in tandem with a non-equilibrium solid-solution growing mechanism.

This article offers supplementary material which is provided at the end of the article.

Keywords: amorphous carbonate; barium; biomineralisation; calcium; growth entrapment; ISSP-17; lake water; solid solution; strontium; uptake kinetic effect

Article note:

A collection of invited papers based on presentations at the International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-17), Geneva, 24–29 July 2016.


  • [1]

    A. Martignier, M. Pacton, M. Filella, J.-M. Jaquet, F. Barja, K. Pollok, F. Langenhorst, S. Lavigne, P. Guagliardo, M. R. Kilburn, C. Thomas, R. Martini, D. Ariztegui. Geobiology 15, 240 (2017).Google Scholar

  • [2]

    J. M. Fein, C. J. Daughney, N. Yee, T. A. Davis. Geochim. Cosmochim. Acta 61, 3319 (1997).Google Scholar

  • [3]

    D. A. Fowle, J. B. Fein. Geochim. Cosmochim. Acta 63, 3059 (1999).Google Scholar

  • [4]

    E. Curti. Appl. Geochem. 14, 433 (1999).Google Scholar

  • [5]

    Y. Wang, H. Xu. Geochim. Cosmochim. Acta 65, 1529 (2001).Google Scholar

  • [6]

    R. B. Lorens. Geochim. Cosmochim. Acta 45, 553 (1981).Google Scholar

  • [7]

    E. B. Watson. Geochim. Cosmochim. Acta 68, 1473 (2004).Google Scholar

  • [8]

    D. J. DePaolo. Geochim. Cosmochim. Acta 75, 1039 (2011).Google Scholar

  • [9]

    B. M. J. Thien, D. A Kulik, E. Curti. Appl. Geochem. 41, 135 (2014).Google Scholar

  • [10]

    F. Heberling, V. L. Vinograd, R. Polly, J. D. Gale, S. Heck, J. Rothe, D. Bosbach, H. Geckeis, B. Winkler. Geochim. Cosmochim. Acta 134, 16 (2014).Google Scholar

  • [11]

    T. Wagner, D. A. Kulik, F. F. Hingerl, S. V. Dmytrieva. Can. Mineral. 50, 1173 (2012).Google Scholar

  • [12]

    D. A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kosakowski, F. F. Hingerl, K. V. Chudnenko, U. Berner. Computat. Geosci. 17, 1 (2013).Google Scholar

  • [13]

    D. A. Kulik, V. L. Vinograd, N. Paulsen, B. Winkler. Phys. Chem. Earth A/B/C 35, 217 (2010).Google Scholar

  • [14]

    W. Hummel, U. Berner, E. Curti, F. J. Pearson, T. Thoenen. Technical Report 02-16, Nagra/PSI Chemical Thermodynamic Data Base 01/01, Universal Publishers, Parkland, Florida (2002).Google Scholar

  • [15]

    D. A. Sverjensky. Geochim. Cosmochim. Acta 48, 1127 (1984).Google Scholar

  • [16]

    A. J. Tesoriero, J. K. Pankow. Geochim. Cosmochim. Acta 60, 1053 (1996).Google Scholar

  • [17]

    J. D. Rimstidt, A. Balog, J. Webb. Geochim. Cosmochim. Acta 62, 1851 (1998).Google Scholar

  • [18]

    G. A. Gaetani, A. L. Cohen. Geochim. Cosmochim. Acta 70, 4617 (2006).Google Scholar

  • [19]

    C. Rodriguez-Navarro, K. Kudłacz, Ö. Cizerc, E. Ruiz-Agudo. Cryst. Eng. Comm. 17, 58 (2015).Google Scholar

  • [20]

    Y. Politi, Y. Levi-Kalisman, S. Raz, F. Wilt, L. Addadi, S. Weiner, I. Sagi. Adv. Funct. Mater. 16, 1289 (2006).Google Scholar

  • [21]

    N. Cam, T. Georgelin, M. Jaber, J-F. Lambert, K. Benzerara. Geochim. Cosmochim. Acta 161, 36 (2015).Google Scholar

  • [22]

    M. Prieto, F. Heberling, R. M. Rodriguez-Galan, F. Brandt. Prog. Cryst. Growth Ch. 62, 29 (2016).Google Scholar

  • [23]

    R. I. Gabitov, E. B. Watson. Geochem. Geophys. Geosyst. 7, 12 (2006).Google Scholar

  • [24]

    M. Dietzel, N. Gussone, A. Eisenhauer. Chem. Geol. 203, 139 (2004).Google Scholar

  • [25]

    J. Tang, S. J. Köhler, M. Dietzel. Geochim. Cosmochim. Acta 72, 3718 (2008).Google Scholar

  • [26]

    M. Wolthers, G. Nehrke, J. P. Gustafsson, P. Van Cappellen. Geochim. Cosmochim. Acta 77, 121 (2012).Google Scholar

About the article

Published Online: 2017-04-25

Published in Print: 2017-05-01

Citation Information: Pure and Applied Chemistry, Volume 89, Issue 5, Pages 645–652, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2017-0205.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 2018, Volume 15, Number 21, Page 6591

Comments (0)

Please log in or register to comment.
Log in