Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 89, Issue 6

Issues

Iodine(III)-mediated synthesis of chiral α-substituted ketones: recent advances and mechanistic insights

Benoit Basdevant
  • University of Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec) J1K 2R1, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Audrey-Anne Guilbault
  • University of Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec) J1K 2R1, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samuel Beaulieu
  • University of Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec) J1K 2R1, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antoine Jobin-Des Lauriers
  • University of Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec) J1K 2R1, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claude Y. Legault
  • Corresponding author
  • University of Sherbrooke, Department of Chemistry, 2500 boul. de l’Université, Sherbrooke (Québec) J1K 2R1, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-25 | DOI: https://doi.org/10.1515/pac-2016-1212

Abstract

The development of iodine(III)-mediated synthetic transformations has received growing interest, in particular to mediate enantioselective processes. In this class, the α-tosyloxylation of ketone derivatives using iodine(III) is a particularly powerful one, as it yields α-tosyloxy ketones – versatile chiral precursors that enable rapid access to numerous α-chiral ketones through nucleophilic displacement. Despite years of research from numerous groups, the enantioselectivities for this transformation have remained modest. Using quantum chemical calculations, we have uncovered a possible rational for the lack of selectivity. With these computational insights, we have developed an alternative experimental strategy and achieved unprecedented levels of selectivities. Applying this newfound knowledge, we have recently developed a new method to access α-halo ketones from non-ketonic precursors.

Keywords: carbonyl compounds; enols; hypervalent iodine; ICPOC-23; oxidation; reaction mechanisms

Article note:

A collection of invited papers based on presentations at the 23rd IUPAC Conference on Physical Organic Chemistry (ICPOC-23), Sydney, Australia, 3–8 July 2016.

References

  • [1]

    V. V. Zhdankin. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, UK (2013).Google Scholar

  • [2]

    H. Tohma, Y. Kita. Hypervalent Iodine Chemistry, T. Wirth (Ed.), pp. 209, Springer, Berlin (2003).Google Scholar

  • [3]

    V. V. Zhdankin, P. J. Stang. Chem. Rev. 102, 2523 (2002).Google Scholar

  • [4]

    R. M. Moriarty, O. Prakash. Org. React. 57, 327 (2001).Google Scholar

  • [5]

    A. Varvoglis. Hypervalent Iodine in Organic Synthesis, Academic Press, San Diego (1997).Google Scholar

  • [6]

    U. Ladziata, V. V. Zhdankin. Arkivoc 1, 26 (2006).Google Scholar

  • [7]

    F. V. Singh, T. Wirth. Chem. Asian J. 9, 950 (2014).Google Scholar

  • [8]

    T. Dohi, Y. Kita. Chem. Commun. 2073 (2009).Google Scholar

  • [9]

    M. Uyanik, K. Ishihara. Chem. Commun. 2086 (2009).Google Scholar

  • [10]

    V. V. Zhdankin. Arkivoc 1, 1 (2009).Google Scholar

  • [11]

    R. D. Richardson, T. Wirth. Angew. Chem. Int. Ed. 45, 4402 (2006).Google Scholar

  • [12]

    T. Wirth. Angew. Chem. Int. Ed. 44, 3656 (2005).Google Scholar

  • [13]

    C. Bosset, R. Coffinier, P. A. Peixoto, M. El Assal, K. Miqueu, J.-M. Sotiropoulos, L. Pouységu, S. Quideau. Angew. Chem. Int. Ed. 53, 9860 (2014).Google Scholar

  • [14]

    K. Volp, A. M. Harned. Chem. Commun. 49, 3001 (2013).Google Scholar

  • [15]

    M. Uyanik, T. Yasui, K. Ishihara. Angew. Chem. Int. Ed. 52, 9215 (2013).Google Scholar

  • [16]

    S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat, A. Chénedé. Angew. Chem. Int. Ed. 48, 4605 (2009).Google Scholar

  • [17]

    J. K. Boppisetti, V. B. Birman. Org. Lett. 11, 1221 (2009).Google Scholar

  • [18]

    T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer, Y. Kita. Angew. Chem., Int. Ed. 47, 3787 (2008).Google Scholar

  • [19]

    M. Uyanik, T. Yasui, K. Ishihara. Angew. Chem. Int. Ed. 49, 2175 (2010).Google Scholar

  • [20]

    M. Uyanik, T. Yasui, K. Ishihara. Tetrahedron 66, 5841 (2010).Google Scholar

  • [21]

    M. Shimogaki, M. Fujita, T. Sugimura. Eur. J. Org. Chem. 7128 (2013).Google Scholar

  • [22]

    M. Fujita, K. Mori, M. Shimogaki, T. Sugimura. RSC Adv. 3, 17717 (2013).Google Scholar

  • [23]

    M. Fujita, K. Mori, M. Shimogaki, T. Sugimura. Org. Lett. 14, 1294 (2012).Google Scholar

  • [24]

    R. Kumar, T. Wirth. Top. Curr. Chem. 373, 243 (2015).Google Scholar

  • [25]

    F. Berthiol. Synthesis 47, 587 (2015).Google Scholar

  • [26]

    A. Parra, S. Reboredo. Chem. Eur. J. 19, 17244 (2013).Google Scholar

  • [27]

    M. Ngatimin, D. W. Lupton. Aust. J. Chem. 63, 653 (2010).Google Scholar

  • [28]

    G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Rebrovic, R. H. Wettbach. J. Org. Chem. 47, 2487 (1982).Google Scholar

  • [29]

    M. S. Khanna, C. P. Garg, R. P. Kapoor. Tet. Lett. 33, 1495 (1992).Google Scholar

  • [30]

    Y. Yamamoto, H. Togo. Synlett. 2006, 798 (2006).Google Scholar

  • [31]

    U. H. Hirt, M. F. H. Schuster, A. N. French, O. G. Wiest, T. Wirth. Eur. J. Org. Chem. 2001, 1569 (2001).Google Scholar

  • [32]

    U. H. Hirt, B. Spingler, T. Wirth. J. Org. Chem. 63, 7674 (1998).Google Scholar

  • [33]

    T. Wirth, U. H. Hirt. Tetrahedron: Asymmetry 8, 23 (1997).Google Scholar

  • [34]

    U. Farooq, S. Schäfer, A. A. Shah, D. M. Freudendahl, T. Wirth. Synthesis 2010, 1023 (2010).Google Scholar

  • [35]

    S. M. Altermann, R. D. Richardson, T. K. Page, R. K. Schmidt, E. Holland, U. Mohammed, S. M. Paradine, A. N. French, C. Richter, A. M. Bahar, B. Witulski, T. Wirth. Eur. J. Org. Chem. 2008, 5315 (2008).Google Scholar

  • [36]

    R. D. Richardson, T. K. Page, S. M. Altermann, S. M. Paradine, A. N. French, T. Wirth. Synlett. 2007, 538 (2007).Google Scholar

  • [37]

    S. Brenet, C. Minozzi, B. Clarens, L. Amiri, F. Berthiol. Synthesis 47, 3859 (2015).Google Scholar

  • [38]

    S. Brenet, F. Berthiol, J. Einhorn. Eur. J. Org. Chem. 2013, 8094 (2013).Google Scholar

  • [39]

    A. Rodriguez, W. J. Moran. Synthesis 44, 1178 (2012).Google Scholar

  • [40]

    J. Yu, J. Cui, X.-S. Hou, S.-S. Liu, W.-G. Gao, S. Jiang, J. Tian, C. Zhang. Tetrahedron: Asymmetry 22, 2039 (2011).Google Scholar

  • [41]

    A.-A. Guilbault, C. Y. Legault. ACS Catalysis 2, 219 (2012).Google Scholar

  • [42]

    A.-A. Guilbault, B. Basdevant, V. Wanie, C. Y. Legault. J. Org. Chem. 77, 11283 (2012).Google Scholar

  • [43]

    M.-È. Thérien, A.-A. Guilbault, C. Y. Legault. Tetrahedron: Asymmetry 24, 1193 (2013).Google Scholar

  • [44]

    M. Uyanik, M. Akakura, K. Ishihara. J. Am. Chem. Soc. 131, 251 (2009).Google Scholar

  • [45]

    J. N. Moorthy, K. Senapati, K. N. Parida, S. Jhulki, K. Sooraj, N. N. Nair. J. Org. Chem. 76, 9593 (2011).Google Scholar

  • [46]

    J. T. Su, W. A. Goddard. J. Am. Chem. Soc. 127, 14146 (2005).Google Scholar

  • [47]

    S. Beaulieu, C. Y. Legault. Chem. Eur. J. 21, 11206 (2015).Google Scholar

  • [48]

    R. M. Moriarty, R. Penmasta, A. K. Awasthi, W. R. Epa, I. Prakash. J. Org. Chem. 54, 1101 (1989).Google Scholar

  • [49]

    P. Mizar, T. Wirth. Angew. Chem. Int. Ed. 53, 5993 (2014).Google Scholar

  • [50]

    B. Basdevant, C. Y. Legault. J. Org. Chem. 80, 6897 (2015).Google Scholar

  • [51]

    B. Basdevant, C. Y. Legault. Org. Lett. 17, 4918 (2015).Google Scholar

  • [52]

    A. Jobin-Des Lauriers, C. Y. Legault. Org. Lett. 18, 108 (2016).Google Scholar

  • [53]

    A. Jobin-Des Lauriers, C. Y. Legault. Asian J. Org. Chem. 5, 1078 (2016).Google Scholar

About the article

Published Online: 2017-01-25

Published in Print: 2017-06-27


Citation Information: Pure and Applied Chemistry, Volume 89, Issue 6, Pages 781–789, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-1212.

Export Citation

©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andrea Flores, Eric Cots, Julien Bergès, and Kilian Muñiz
Advanced Synthesis & Catalysis, 2018
[2]
Aurélie Claraz and Géraldine Masson
Organic & Biomolecular Chemistry, 2018
[3]
[5]
Muhammet Uyanik, Takeshi Yasui, and Kazuaki Ishihara
The Journal of Organic Chemistry, 2017

Comments (0)

Please log in or register to comment.
Log in