Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 90, Issue 1

Issues

Separation technology meets green chemistry: development of magnetically recoverable catalyst supports containing silica, ceria, and titania

Lucas L. R. Vono
  • Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Camila C. Damasceno
  • Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jivaldo R. Matos
  • Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renato F. Jardim / Richard Landers / Sueli H. Masunaga / Liane M. Rossi
  • Corresponding author
  • Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-11 | DOI: https://doi.org/10.1515/pac-2017-0504

Abstract

Magnetic separation can be considered a green technology because it is fast, efficient, consumes low energy, and minimizes the use of solvents and the generation of waste. It has been successfully used in laboratory scale to facilitate supported catalysts’ handling, separation, recovery, and recycling. Only few materials are intrisically magnetic, hence the application of magnetic materials as catalyst supports has broaden the use of magnetic separation. Iron oxides, silica-coated iron oxides, and carbon-coated-cobalt are among the most studied catalyst supports; however, other metal oxide coatings, such as ceria and titania, are also very interesting for application in catalysis. Here we report the preparation of magnetically recoverable magnetic supports containing silica, ceria, and titania. We found that the silica shell protects the iron oxide core and allows the crystalization of ceria and titania at high temperature without compromising the magnetic properties of the catalyst supports.

Keywords: catalyst support; ceria; ICGC-6; magnetic separation; magnetite; titania

Article note:

A collection of invited papers based on presentations at the 6th International IUPAC Conference on Green Chemistry (ICGC-6), Venice (Italy), 4–8 September 2016.

References

  • [1]

    R. B. N. Baig, R. S. Varma. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 49, 752 (2013).CrossrefWeb of ScienceGoogle Scholar

  • [2]

    L. M. Rossi, N. J. S. Costa, F. P. Silva, R. Wojcieszak. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906 (2014).CrossrefWeb of ScienceGoogle Scholar

  • [3]

    D. Wang, D. Astruc. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114, 6949 (2014).Web of ScienceCrossrefGoogle Scholar

  • [4]

    S. Shylesh, V. Schunemann, W. R. Thiel. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem.-Int. Ed. 49, 3428 (2010).CrossrefWeb of ScienceGoogle Scholar

  • [5]

    V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Bassett. Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036 (2011).Web of ScienceCrossrefGoogle Scholar

  • [6]

    D. K. Yi, S. S. Lee, J. Y. Ying. Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater. 18, 2459 (2006).CrossrefGoogle Scholar

  • [7]

    Z. Wang, P. Mao, N. He. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon 44, 3277 (2006).CrossrefGoogle Scholar

  • [8]

    X. Dong, H. Chen, W. Zhao, X. Li, J. Shi. Synthesis and magnetic properties of mesostructured gamma-Fe2O3/carbon composites by a Co-casting method. Chem. Mater. 19, 3484 (2007).CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Z. H. Wang, C. J. Choi, B. K. Kim, J. C. Kim, Z. D. Zhang. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon 41, 1751 (2003).CrossrefGoogle Scholar

  • [10]

    Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane. Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2, 365 (2010).CrossrefWeb of ScienceGoogle Scholar

  • [11]

    M. J. Jacinto, P. K. Kiyohara, S. H. Masunaga, R. F. Jardim, L. M. Rossi. Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl. Catal. A Gen. 338, 52 (2008).CrossrefWeb of ScienceGoogle Scholar

  • [12]

    L. M. Rossi, M. A. S. Garcia, L. L. R. Vono. Recent advances in the development of magnetically recoverable metal nanoparticle catalysts. J. Braz. Chem. Soc. 23, 1959 (2012).Google Scholar

  • [13]

    L. M. Rossi, L. L. R. Vono, M. A. S. Garcia, T. L. T. Faria, J. A. Lopez-Sanchez. Screening of soluble rhodium nanoparticles as precursor for highly active hydrogenation catalysts: the effect of the stabilizing agents. Top. Catal. 56, 1228 (2013).CrossrefWeb of ScienceGoogle Scholar

  • [14]

    N. J. S. Costa, M. Guerrero, V. Collière, É. Teixeira-Neto, R. Landers, K. Philippot, L. M. Rossi. Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts. ACS Catal. 4, 1735 (2014).Web of ScienceCrossrefGoogle Scholar

  • [15]

    P. M. Uberman, N. J. S. Costa, K. Philippot, R. C. Carmona, A. A. Dos Santos, L. M. Rossi. A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model. Green Chem. 16, 4566 (2014).CrossrefWeb of ScienceGoogle Scholar

  • [16]

    M. A. S. Garcia, R. S. Heyder, K. C. B. Oliveira, J. C. S. Costa, P. Corio, E. V. Gusevskaya, E. N. dos Santos, R. C. Bazito, L. M. Rossi. Support functionalization with a phosphine-containing hyperbranched polymer: a strategy to enhance phosphine grafting and metal loading in a hydroformylation catalyst. Chemcatchem 8, 1951 (2016).Web of ScienceCrossrefGoogle Scholar

  • [17]

    M. Ibrahim, M. A. S. Garcia, L. L. R. Vono, M. Guerrero, P. Lecante, L. M. Rossi, K. Philippot. Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule. Dalton Trans. 45, 17782 (2016).CrossrefWeb of ScienceGoogle Scholar

  • [18]

    L. M. Rossi, I. M. Nangoi, N. J. S. Costa. Ligand-assisted preparation of palladium supported nanoparticles: a step toward size control. Inorg. Chem. 48, 4640 (2009).Web of ScienceCrossrefGoogle Scholar

  • [19]

    C. A. Henriques, S. M. A. Pinto, J. Pina, C. Serpa, A. Fernandes, L. M. Rossi, M. F. Ribeiro, M. M. Pereira, M. J. F. Calvete. Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Trans. 45, 16211 (2016).CrossrefWeb of ScienceGoogle Scholar

  • [20]

    C. W. Liria, V. A. Ungaro, R. M. Fernandes, N. J. S. Costa, S. R. Marana, L. M. Rossi, M. Teresa Machini. Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst. J. Nanopart. Res. 16, 2612 (2014).CrossrefWeb of ScienceGoogle Scholar

  • [21]

    V. A. Ungaro, C. W. Liria, C. D. Romagna, N. J. S. Costa, K. Philippot, L. M. Rossi, M. Teresa Machini. A green route for the synthesis of a bitter-taste dipeptide combining biocatalysis, heterogeneous metal catalysis and magnetic nanoparticles. Rsc Adv. 5, 36449 (2015).Web of ScienceCrossrefGoogle Scholar

  • [22]

    J. P. Cheng, R. Ma, M. Li, J. S. Wu, F. Liu, X. B. Zhang. Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties. Chem. Eng. J. 210, 80 (2012).Web of ScienceCrossrefGoogle Scholar

  • [23]

    F. Effenberger, R. A. Couto, P. K. Kiyohara, G. Machado, S. H. Masunaga, R. F. Jardim, L. M. Rossi. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate. Nanotechnology 28, 115603 (2017).Web of ScienceCrossrefGoogle Scholar

  • [24]

    A. Bensalem, F. Bozon-Verduraz, M. Delamar, G. Bugli. Preparation and characterization of highly dispersed silica-supported ceria. Appl. Catal. A Gen. 121, 81 (1995).CrossrefGoogle Scholar

  • [25]

    P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. Dalton Trans. 17, 1686 (1976).Google Scholar

  • [26]

    J. El Fallah, L. Hilaire, M. Roméo, F. Le Normand. Effect of surface treatments, photon and electron impacts on the ceria 3d core level. J. Electron Spectros. Relat. Phenomena 73, 89 (1995).CrossrefGoogle Scholar

  • [27]

    S. Bagheri, N. Muhd Julkapli, S. Bee Abd Hamid. Titanium dioxide as a catalyst support in heterogeneous catalysis. ScientificWorldJ 2014, 21 (2014).Google Scholar

  • [28]

    R. Güttel, M. Paul, F. Schuth. Activity improvement of gold yolk–shell catalysts for CO oxidation by doping with TiO2. Catal. Sci. Technol. 1, 65 (2011).Web of ScienceCrossrefGoogle Scholar

  • [29]

    K. Usha, B. Mondal, D. Sengupta, P. Kumbhakar. Photo-conversion efficiency measurement of dye-sensitized solar cell using nanocrystalline TiO2 thin film as photo-anodes. Measurement 61, 21 (2015).CrossrefWeb of ScienceGoogle Scholar

  • [30]

    C. Liu, D. Yang, Y. Jiao, Y. Tian, Y. Wang, Z. Jiang. Biomimetic synthesis of TiO2–SiO2–Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 3824 (2013).CrossrefWeb of ScienceGoogle Scholar

  • [31]

    E. McCafferty, J. P. Wightman. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 26, 549 (1998).CrossrefGoogle Scholar

  • [32]

    P. W. Park, J. S. Ledford. Effect of crystallinity on the photoreduction of cerium oxide: a Study of CeO2 and Ce/Al2O3 catalysts. Langmuir 12, 1794 (1996).CrossrefGoogle Scholar

About the article

Published Online: 2017-09-11

Published in Print: 2018-01-26


Citation Information: Pure and Applied Chemistry, Volume 90, Issue 1, Pages 133–141, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2017-0504.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in