Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 90, Issue 10


Collecting and processing samples in remote and dangerous places: the Environmental Sample Processor as a case study

James Birch
  • Corresponding author
  • Director, SURF Center: Sensors, Underwater Research of the Future, Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-08 | DOI: https://doi.org/10.1515/pac-2018-0201


Collecting water samples in remote or dangerous places can help identify chemical spills, discover clandestine weapons production, or determine if there has been natural or human-caused biological contamination of waterways. These collections can be expensive or put humans at risk due to the nature of the locale or the detection target. Such sample collection challenges are similar to those faced in oceanography, where accessibility and the physical realities of remoteness, corrosiveness, and pressure, place severe requirements on instrumentation, especially for unattended operations over long periods of time. The Monterey Bay Aquarium Research Institute (MBARI) has been at the forefront of developments that push forward sample collection and processing capabilities in the ocean. Specifically, the development of the environmental sample processor (ESP), a microbiology laboratory-in-a-can, has allowed extended presence with high frequency sampling. When deployed, the ESP filters water to collect particles, then either preserves those particles, or creates a homogenate for molecular analysis. Originally designed for detecting harmful algae blooms and the toxins they produce, the ESP now has expanded analytical capabilities. A newer version of the ESP is now being tested on an autonomous underwater vehicle, providing never-before-seen mobility and unprecedented access to the top 300 m of the ocean.

Keywords: Chemical Weapons Convention 2017; environmental monitoring; nucleic acids; sampling

Article note:

A special issue containing invited papers on Innovative Technologies for Chemical Security, based on work done within the framework of the Chemical Weapons Convention.


  • [1]

    C. Scholin. Ocean Sci. 6, 51 (2010).CrossrefGoogle Scholar

  • [2]

    C. Scholin. In Encyclopedia of Biodiversity, Vol 2, S. A. Levin (Ed.), pp. 690–700. Academic Press, Waltham, MA (2013).Google Scholar

  • [3]

    W. Ussler, C. Preston, P. Tavormina, D. Pargett, S. Jensen, B. Roman, R. Marin III, S. Shah, P. Girguis, J. Birch, V. Orphan, C. Scholin. Env. Sci. Tech. 47, 9339 (2013).CrossrefGoogle Scholar

  • [4]

    H. Olins, D. Rogers, C. Preston, W. Ussler III, D. Pargett, S. Jensen, B. Roman, J. Birch, C. Scholin, M. Haroon, P. Girguis. Front. Microbiol. 8, 1042 (2017).CrossrefGoogle Scholar

  • [5]

    J. Robidart, M. Church, J. Ryan, F. Ascani, S. Wilson, D. Bombar, R. Marin III, K. Richards, D. Karl, C. Scholin, J. Zehr. ISME J. 8, 1175 (2014).CrossrefGoogle Scholar

  • [6]

    C. Scholin, K. Buck, T. Britschgi, J. Cangelosi, F. Chavez. Phycologia 35, 190 (1996).CrossrefGoogle Scholar

  • [7]

    C. Preston, R. Marin III, S. Jenson, J. Feldman, J. Birch, E. Massion, E. DeLong, M. Suzuki, K. Wheeler, C. Scholin. Env. Microbiology 11, 1168 (2009).CrossrefGoogle Scholar

  • [8]

    C. Scholin, G. Doucette, S. Jensen, B. Roman, D. Pargett, R. Marin III, C. Preston, W. Jones, J. Feldman, C. Everlove, A. Harris, N. Alvarado, E. Massion, J. Birch, D. Greenfield, R. Vrijenhoek, C. Mikulski, K. Jones. Oceanography 22, 158 (2009).CrossrefGoogle Scholar

  • [9]

    G. Doucette, C. Mikulski, K. Jones, K. King, D. Greenfield, R. Marin III, S. Jensen, B. Roman, C. Elliott, C. Scholin. Harmful Algae 8, 880 (2009).CrossrefGoogle Scholar

  • [10]

    C. Preston, A. Harris, J. Ryan, B. Roman, R. Marin III, S. Jensen, C. Everlove, J. Birch, J. Dzenitis, D. Pargett, M. Adachi, K. Turk, J. Zehr, C. Scholin. PLoS One 6, e22522 (2011).CrossrefGoogle Scholar

  • [11]

    J. Robidart, C. Preston, R. Paerl, K. Turk, A. Mosier, C. Francis, C. Scholin, J. Zehr. ISME J. 6, 513 (2012).CrossrefGoogle Scholar

  • [12]

    E. Ottesen, R. Marin III, C. Preston, C. Young, J. Ryan, C. Scholin, E. DeLong. ISME J. 5, 1881 (2011).CrossrefGoogle Scholar

  • [13]

    J. Mitchell. Sensors 10, 7323 (2010).CrossrefGoogle Scholar

  • [14]

    T. Chinowsky, J. Quinn, D. Bartholomew, R. Kaiser, J. Elkind. Sens. Actuators B 91, 266 (2003).CrossrefGoogle Scholar

  • [15]

    R. Stevens, S. D. Soelberg, B. Eberhart, S. Spencer, J. Wekell, T. Chinowsky, V. Trainer, C. Furlong. Harmful Algae 6, 166 (2007).CrossrefGoogle Scholar

  • [16]

    Y. Zhang, B. Kieft, R. McEwen, M. Stanway, J. Bellingham, J. Ryan, B. Hobson, D. Pargett, J. Birch, C. Scholin. MTS/IEEE Oceans’15 doi:10.23919/OCEANS.2015.7401969 (2015).Google Scholar

About the article

Published Online: 2018-06-08

Published in Print: 2018-10-25

Citation Information: Pure and Applied Chemistry, Volume 90, Issue 10, Pages 1625–1630, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0201.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in