Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 90, Issue 11

Issues

Kinetics of radical telomerization of acrylic acid in the presence of 1-octadecanethiol

Yaroslav O. Mezhuev
  • Corresponding author
  • D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia, Tel.: 79265496985
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oksana Y. Sizova / Yuri V. Korshak / Anna L. Luss / Ivan V. Plyushchii / Alina Y. Svistunova / Antonis K. Stratidakis
  • Center of Toxicology Science and Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, Heraklion, 71003 Crete, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexey V. Panov / Mikhail I. Shtilman / Aristidis M. Tsatsakis
  • Center of Toxicology Science and Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, Heraklion, 71003 Crete, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-23 | DOI: https://doi.org/10.1515/pac-2018-0601

Abstract

The oligomer of acrylic acid with a thiooctadecyl end-group was obtained by using octadecyl mercaptan as the chain-transfer agent. The resulting oligomer was characterized by 1H NMR and 13C NMR spectroscopy and critical micelle concentration was determined in aqueous solution. The order with respect to the initiator concentration was 0.5 and 1.6 with respect to the monomer concentration. The abnormal reaction order with respect to the monomer concentration was explained by participation in the chain propagation of unassociated and associated forms of acrylic acid, which were stabilized by formation of hydrogen bonds. The kinetic parameters of telomerization were determined. Telomerization with acrylic acid in the non-associated form had lower activation energy and lower pre-exponential factor than in the case of associated forms. The synthesis of the acrylic acid oligomer with a thiooctadecyl end-group having a low critical micelle concentration in water was carried out in one stage and corresponds to the concept of atom economy.

Keywords: acrylic acid; atom economy; ICGC-7; kinetics; mechanism; polymerization; surface active agents; telomerization

Article note

A collection of invited papers based on presentations at the 7th International IUPAC Conference on Green Chemistry (ICGC-7), Moscow, Russia, 2–5 October 2017.

References

  • [1]

    K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman. Surfactants and Polymers in Aqueos Solution, p. 97, John Wiley and Sons, Ltd. (2002).Google Scholar

  • [2]

    E. Olkowska, Z. Polkowska, J. Namieśnik. Chem. Rev. 111, 5667 (2011).CrossrefGoogle Scholar

  • [3]

    M. J. Scott, M. N. Jones. Biochim. Biophys. Acta 1508, 235 (2000).CrossrefGoogle Scholar

  • [4]

    G.-G. Ying. Environ. Int. 32, 417 (2006).CrossrefGoogle Scholar

  • [5]

    G. B. Smith, G. T. Russel. Macromol. Symp. 248, 1 (2007).Google Scholar

  • [6]

    A. B. Lowe. Polym. Chem. 5, 4820 (2014).CrossrefGoogle Scholar

  • [7]

    D. Myers. Surfactant Science and Technology, p. 29, John Wiley and Sons, Inc., Hoboken, New Jersey (2006).Google Scholar

  • [8]

    A. N. Kuskov, P. P. Kulikov, A. V. Goryachaya, M. N. Tzatzarakis, A. O. Docea, K. Velonia, M. I. Shtilman, A. M. Tsatsakis. Nanomedicine: Nanotech., Biol. Med. 13, 1021 (2017).CrossrefGoogle Scholar

  • [9]

    A. L. Luss, P. P. Kulikov, S. B. Romme, C. L. Andersen, C. P. Pennisi, A. O. Docea, A. N. Kuskov, K. Velonia, Ya. O. Mezhuev, M. I. Shtilman, A. M. Tsatsakis, L. Gurevich. Nanomedicine (Lond) 13, 703 (2018).CrossrefGoogle Scholar

  • [10]

    V. P. Torchilin, T. S. Levchenko, K. R. Whiteman, A. A. Yaroslavov, A. M. Tsatsakis, A. K. Rizos, E. V. Michailova, M. I. Shtilman. Biomaterials 22, 3035 (2001).CrossrefGoogle Scholar

  • [11]

    A. N. Kuskov, P. P. Kulikov, A. L. Luss, A. V. Goryachaya, M. I. Shtil’man. Russ. J. Appl. Chem. 89, 1461 (2016).CrossrefGoogle Scholar

  • [12]

    C. Loubat, B. Boutevin. Polym. Bull. 44, 569 (2000).CrossrefGoogle Scholar

  • [13]

    C. Loubat, B. Boutevin. Polym. Int. 50, 375 (2001).CrossrefGoogle Scholar

  • [14]

    C. Bunyakan, D. Hunkeler. Polymer 40, 6213 (1999).CrossrefGoogle Scholar

  • [15]

    H. Catalgil-Giz, A. Giz, A. M. Alb, W. F. Reed. J. Appl. Polym. Sci. 91, 1352 (2004).CrossrefGoogle Scholar

  • [16]

    S. S. Cutié, P. B. Smith, D. E. Henton, T. L. Staples, C. Powell. J. Polym. Sci. Part B. 35, 2029 (1997).CrossrefGoogle Scholar

  • [17]

    V. A. Kabanov, D. A. Topchiev, T. M. Karaputadze. J. Polym. Sci. Symp. 42, 173 (1973).Google Scholar

  • [18]

    L. Qiu, K. Wang, S. Zhu, Y. Lu, G. Luo. Chem. Eng. J. 284, 233 (2016).CrossrefGoogle Scholar

  • [19]

    R. A. Scott, N. A. Peppas. AIChE J. 43, 135 (1997).CrossrefGoogle Scholar

  • [20]

    P. P. Kulikov, A. N. Kuskov, A. V. Goryachaya, A. N. Luss, M. I. Shtilman. Polym. Sci. Ser. D. 10, 264 (2017).Google Scholar

  • [21]

    R. M. Silverstein, F. X. Webster, D. J. Kiemle. Spectrometric Identification of Organic Compounds, pp. 188–228, John Wiley and Sons, Inc., Hoboken, New Jersey (2005).Google Scholar

  • [22]

    R. J. Larson, E. A. Bookland, R. T. Williams, K. M. Yocom, D. A. Saucy, M. B. Freeman, G. Swift. J. Envir. Polym. Degrad. 5, 41 (1997).Google Scholar

  • [23]

    F. Kawai. Appl. Microbiol. Biotechnol. 39, 382 (1993).Google Scholar

  • [24]

    EFSA J. 12, 3648 (2014). https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2014.3648.

  • [25]

    M. B. Freeman, Y. H. Paik, G. Swift, R. Wilczynski, S. K. Wolk, K. M. Yocom. ACS Symp. Ser. 627, 118 (1996).CrossrefGoogle Scholar

  • [26]

    G. E. Scott, E. Senogles. J. Macromol. Sci. Part C. 9, 49 (1973).CrossrefGoogle Scholar

  • [27]

    M. Apelblat. Can. J. Chem. 69, 638 (1991).CrossrefGoogle Scholar

  • [28]

    A. Chapiro, J. Dulieu. Eur. Polym. J. 13, 563 (1977).CrossrefGoogle Scholar

  • [29]

    D. Di Tommaso. CrystEngComm 15, 6564 (2013).CrossrefGoogle Scholar

  • [30]

    C. Bunyakan, L. Armanet, D. Hunkeler. Polymer 40, 6225 (1999).CrossrefGoogle Scholar

  • [31]

    J-N. Ollagnier, T. Tassaing, S. Harrisson, M. Destarac. React. Chem. Eng. 1, 372 (2016).CrossrefGoogle Scholar

About the article

Published Online: 2018-10-23

Published in Print: 2018-11-27


Citation Information: Pure and Applied Chemistry, Volume 90, Issue 11, Pages 1743–1754, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0601.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in