Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 90, Issue 2


The coupling of carbon dioxide with ethene to produce acrylic acid sodium salt in one pot by using Ni(II) and Pd(II)-phosphine complexes as precatalysts

Andrea Vavasori
  • Corresponding author
  • Department of Molecular Science and Nanosystems, Ca’ Foscari University Venice, Scientific Campus, via Torino 155, 30172 Mestre (Venezia), Italy, Tel.: +39 041 2348577
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Loris Calgaro
  • Department of Molecular Science and Nanosystems, Ca’ Foscari University Venice, Scientific Campus, via Torino 155, 30172 Mestre (Venezia), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luca Pietrobon
  • Department of Molecular Science and Nanosystems, Ca’ Foscari University Venice, Scientific Campus, via Torino 155, 30172 Mestre (Venezia), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucio Ronchin
  • Department of Molecular Science and Nanosystems, Ca’ Foscari University Venice, Scientific Campus, via Torino 155, 30172 Mestre (Venezia), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-21 | DOI: https://doi.org/10.1515/pac-2017-0706


The use of CO2 as a feedstock for chemical synthesis is considered as a viable alternative option to some traditional processes. One of the most interesting challenge for the industry is represented by the CO2 coupling with olefins to produce acrylate. Only recently, with the choice of suitable ligands and the use of a sacrificial base, a selective catalytic reaction was established by using Ni(0)-based complexes. The one-pot reaction, which leads to the highest TON (107 mol/mol Ni, in 20 h) reported so far, was successfully developed starting from Ni(0)-based precursors in the presence of disphosphine ligands, a large excess of base and of finely powdered zinc. In the present paper, we carried out the catalytic synthesis of sodium acrylate from CO2 and ethene, in one-pot, by using Ni(II)-chloride and Pd(II)-chloride phosphine-complexes as precatalyst. The reaction occurs under basic conditions and without adding any external reductants. The Ni(II) complexes lead to higher TON than the respective Pd(II) precursors and the best results are obtained by using diphosphines having high bite angles. Such catalysis is favored by aprotic and polar solvents in which a TON of 290 mol/mol Ni is reached by using the [NiCl2(dppp)] precursor in DMSO. Furthermore the TON could be increased by increasing the temperature, the base concentration and by using diphosphine ligands having high bite angle.

Keywords: acrylate; carbon dioxide; ethene; homogeneous catalysis; ICGC-6


  • [1]

    H. Oman. CHEMTECH. feb, 116 (1988).Google Scholar

  • [2]

    B. Fatih. CO2 emission from fuel combustion Highlights, International Energy Agency (IEA) Publications, Paris Cedex (2016 edition).Google Scholar

  • [3]

    J. G. J. Olivier, G. Janssens-Maenhout, M. Muntean, J. A. H. W. Peters. Trends in global CO2 emissions: 2016 Report, ©PBL Netherlands Environmental Assessment Agency The Hague, PBL publication number: 2315 European Commission (2016).Google Scholar

  • [4]

    W. C. Clark, Ed. Carbon Dioxide Review: 1982, p. 303, Clarendon Press, Oxford, UK (1982).Google Scholar

  • [5]

    D. E. Gushee. CHEMTECH. aug, 470 (1989).Google Scholar

  • [6]

    K. Huang, C.-L. Sun, Z.-J. Shi. Chem. Soc. Rev. 40, 2435 (2011).CrossrefGoogle Scholar

  • [7]

    E. A. Quadrelli, G. Centi, G. J.-L. Duplan, S. Perathoner. ChemSusChem. 4, 1194 (2011).CrossrefGoogle Scholar

  • [8]

    C. Song. Catalysis Today 115, 2 (2016).Google Scholar

  • [9]

    M. Aresta. Carbon Dioxide as Chemical Feedstock, 1st edition, Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim (2010).Google Scholar

  • [10]

    M. Bertau, E. H. Offermanns, G. Menges, W. Keim, F. X. Effenberger. Chem. Ing. Tech. 82, 2055 (2010).CrossrefGoogle Scholar

  • [11]

    O. Ola, M. M. Maroto-Valer, S. Mackintosh. Energy Proced. 37, 6704 (2013).CrossrefGoogle Scholar

  • [12]

    M. Aresta, A. Dibenedetto. Dalton Trans. 28, 2975 (2007).Google Scholar

  • [13]

    S. L. Suib, Ed. New and Future Developments in Catalysis: Activation of Carbon Dioxide, Elsevier, Amsterdam (2013).Google Scholar

  • [14]

    Q. Liu, L. Wu, R. Jackstell, M. Beller. Nat. Commun. 6, 1 (2015).Google Scholar

  • [15]

    M. Hollering, B. Dutta, F. E. Kühn. Coord. Chem. Rev. 309, 51 (2016).CrossrefGoogle Scholar

  • [16]

    S. C. E. Stieber, N. Huguet, T. Kageyama, I. Jevtovikj, P. Ariyananda, A. Gordillo, S.A. Schunk, F. Rominger, P. Hofmann, M. Limbach. Chem. Commun. 51, 10907 (2015).CrossrefGoogle Scholar

  • [17]

    S. Manzini, N. Huguet, O. Trapp, T. Schaub. Eur. J. Org. Chem. 2015, 7122 (2015).CrossrefGoogle Scholar

  • [18]

    Y. S. Jang, Y. S. Choi, H. S. Byun. Korean J. Chem. Eng. 32, 958 (2015).CrossrefGoogle Scholar

  • [19]

    S. D. Yoon, H. S. Byun. Korean J. Chem. Eng. 31, 522 (2014).CrossrefGoogle Scholar

  • [20]

    P. N. Plessow, A. Schafer, M. Limbach, P. Hofmann. Organometallics 33, 3657 (2014).CrossrefGoogle Scholar

  • [21]

    Y. Jing, L. Wei, Y. D. Wang, Y. M. Yu. Microporous Mesoporous Mater. 183, 124 (2014).CrossrefGoogle Scholar

  • [22]

    A. L. Khan, C. Klaysom, A. Gahlaut, I. F. J. J. Vankelecom. Membr. Sci. 436, 145 (2013).CrossrefGoogle Scholar

  • [23]

    D. Jin, T. J. Schmeier, P. G. Williard, N. Hazari, W. H. Bernskoetter. Organometallics 32, 2152 (2013).CrossrefGoogle Scholar

  • [24]

    M. L. Lejkowski, R. Lindner, T. Kageyama, G. E. Bodizs, P. N. Plessow, I. B. Muller, A. Schafer, F. Rominger, P. Hofmann, C. Futter, S. A. Schunk, M. Limbach. Chem. Eur. J. 18, 14017 (2012).CrossrefGoogle Scholar

  • [25]

    S. Beuermann, M. Buback, C. Schmaltz. Ind. Eng. Chem. Res. 38, 3338 (1999).CrossrefGoogle Scholar

  • [26]

    K. Murata, A. Matsuda. Bull. Chem. Soc. Jpn. 53, 214 (1980).CrossrefGoogle Scholar

  • [27]

    M. Aresta, A. Dibenedetto, A. Angelini. Chem. Rev. 114, 1709 (2014).CrossrefGoogle Scholar

  • [28]

    S. Kraus, B. Rieger. Top Organomet. Chem. 53, 199 (2016).Google Scholar

  • [29]

    E. Alper, O. Y. Orhan. Petroleum 3, 109 (2017).CrossrefGoogle Scholar

  • [30]

    D. Arntz, A. Fischer, M. Höpp, S. Jacobi, J. Sauer, T. Ohara, T. Sato, N. Shimizu, H. Schwind. “Acrolein and Methacrolein”, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2012).Google Scholar

  • [31]

    H. Hoberg, K. Jenni, K. Angermund, C. Kruger. Angew. Chem. Int. Ed. 26, 153 (1987).CrossrefGoogle Scholar

  • [32]

    H. Hoberg, K. Jenni, C. Kruger, E. Raabe. Angew. Chem. Int. Ed. 25, 810 (1986).CrossrefGoogle Scholar

  • [33]

    K. Osakada, M. K. Doh, F. Ozawa, A. Yamamoto. Organometallics 9, 2197 (1990).CrossrefGoogle Scholar

  • [34]

    M. Aresta, C. Pastore, P. Giannoccaro, G. Kovacs, A. Dibenedetto, I. Papai. Chem. Eur. J. 13, 9028 (2007).CrossrefGoogle Scholar

  • [35]

    T. Yamamoto, K. Sano, K. Osakada, S. Komiya, A. Yamamoto, Y. Kushi, T. Tada. Organometallics 9, 2396 (1990).CrossrefGoogle Scholar

  • [36]

    K. T. Aye, D. Colpitts, G. Ferguson, R. J. Puddephatt. Organometallics 7, 1454 (1988).CrossrefGoogle Scholar

  • [37]

    S. A. Cohen, J. E. Bercaw. Organometallics 4, 1006 (1985).CrossrefGoogle Scholar

  • [38]

    V. V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal. Organometallics 25, 317 (2006).Google Scholar

  • [39]

    H. G. Alt, C.E. Denner. J. Organomet. Chem. 390, 53 (1990).CrossrefGoogle Scholar

  • [40]

    N. Chatani, K. Yamashita. Synlett. 6, 919 (2005).Google Scholar

  • [41]

    M. Aresta, E. Quaranta. J. Organomet. Chem. 463, 215 (1993).CrossrefGoogle Scholar

  • [42]

    J. C. Choi, K. Kohno, M. Otsuka, H. Yasuda, T. Sakakura. Organometallics 30, 6060 (2011).CrossrefGoogle Scholar

  • [43]

    R. Alvarez, E. Carmona, D. J. Cole-Hamilton, A. Galindo, E. Gutierrez-Puebla, A. Monge, M.L.Poveda, C. Ruiz. J. Am. Chem. Soc. 107, 5529 (1985).CrossrefGoogle Scholar

  • [44]

    R. Alvarez, E. Carmona, A. Galindo, E. Gutierrez, J. M. Marin, A. Monge, M. L. Poveda, C. Ruiz, J. M. Savariault. Organometallics 8, 2430 (1989).CrossrefGoogle Scholar

  • [45]

    M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn. Angew. Chem. Int. Ed. 50, 8510 (2011).CrossrefGoogle Scholar

  • [46]

    M. Drees, M. Cokoja, F. E. Kühn. ChemCatChem 4, 1703 (2012).CrossrefGoogle Scholar

  • [47]

    M. Limbach. “Acrylates from alkenes and CO2, the stuff that dreams are made of”, in Advances in Organometallic Chemistry, J. P. Pedro (Ed.), p. 175, Academic Press, Burlington (2015).Google Scholar

  • [48]

    F. J. Hernandez, M. Gaydou, E. Serrano, M. Van Gemmeren, R. Martin. Top. Curr. Chem. 374, 91 (2016).Google Scholar

  • [49]

    N. Huguet, I. Jevtovikj, A. Gordillo, M. L. Lejkowski, R. Lindner, M. Bru, A. Y. Khal-imon, F. Rominger, S. A. Schunk, P. Hofmann, M. Limbach. Chem. Eur. J. 20, 16858 (2014).CrossrefGoogle Scholar

  • [50]

    D. C. Graham, C. Mitchell, M. I. Bruce, G. F. Metha, J. H. Bowie, M. A. Buntine. Organometallics 26, 6784 (2007).CrossrefGoogle Scholar

  • [51]

    C. Hendriksen, E. A. Pidko, G. Yang, B. Schaffner, D. Vogt. Chem Eur J. 20, 12037 (2014).CrossrefGoogle Scholar

  • [52]

    M. Kumada, K. Tamao, K. Sumitani, Org. Synth. Coll. 6, 407 (1988).Google Scholar

  • [53]

    A. Vavasori, L. Ronchin, L. Toniolo. J. Mol. Cat. Chem. 363–364, 398 (2012).Google Scholar

  • [54]

    A. Vavasori, L. Ronchin, L. Toniolo. Appl. Cat. A: General 449, 198 (2012).CrossrefGoogle Scholar

  • [55]

    T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer, G. Wilkinson. J. Chem. Soc. 3632 (1965).CrossrefGoogle Scholar

  • [56]

    T. Iijima, T. Yamaguchi. Appl. Cat. A: General 345, 12 (2008).CrossrefGoogle Scholar

  • [57]

    J. Tsuji. Palladium Reagents and Catalysts: New Perspectives for the 21st Century, John Wiley & Sons, New York (2004).Google Scholar

  • [58]

    N. Miyaura, Ed. Topics in Current Chemistry, Vol. 219, Springer-Verlag, Berlin (2002).Google Scholar

  • [59]

    G. C. Fu, A. F. Littke. Angew. Chem., Int. Ed. 41, 4176 (2002).CrossrefGoogle Scholar

  • [60]

    N. E. Leadbeater. J. Org. Chem. 66, 7539 (2001).CrossrefGoogle Scholar

  • [61]

    R. J. P. Corriu, J. P. Masse. J. Chem. Soc., Chem. Commun. 0, 144a (1972).Google Scholar

  • [62]

    J. Terao, H. Watanabe, N. Kambe. J. Am. Chem. Soc. 127, 3656 (2005).CrossrefGoogle Scholar

  • [63]

    P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu. Angew. Chem., Int. Ed. 42, 4302 (2003).CrossrefGoogle Scholar

  • [64]

    V. Percec, J.-Y. Bae, D. H. Hill. J. Org. Chem. 60, 1060 (1995).CrossrefGoogle Scholar

  • [65]

    E. Brenner, Y. Fort. Tetrahedron Lett. 39, 5359 (1998).CrossrefGoogle Scholar

  • [66]

    C. Desmarets, R. Schneider, Y. Fort. J. Org. Chem. 67, 3029 (2002).CrossrefGoogle Scholar

  • [67]

    K. Tamao, K. Sumitani, M. Kumada. J. Am. Chem. Soc. 94, 4374 (1972).CrossrefGoogle Scholar

  • [68]

    F. Ozawa, A. Kubo, T. Hayashi. Chem. Lett. 21, 2177 (1992).CrossrefGoogle Scholar

  • [69]

    C. Amatore, A. Jutand, A. Thuilliez. Organometallics 20, 3241 (2001).CrossrefGoogle Scholar

  • [70]

    C. Amatore, A. Jutand, M. A. M. Barki. Organometallics, 11, 3009 (1992).CrossrefGoogle Scholar

  • [71]

    C. Amatore, E. Carre, A. Jutand, M. A. M. Barki. Organometallics 14, 1818 (1995).CrossrefGoogle Scholar

  • [72]

    C. Amatore, A. Jutand. Acc. Chem. Res. 33, 314 (2000).CrossrefGoogle Scholar

  • [73]

    Z. Csakai, R. Skoda-Foldes, L. Kollar. Inorg. Chim. Acta 286, 93 (1999).CrossrefGoogle Scholar

  • [74]

    B. P. Fors, P. Krattiger, E. Strieter, S. L. Buchwald. Org. Lett. 10, 3505 (2008).CrossrefGoogle Scholar

  • [75]

    M. Ioele, G. Ortaggi, M. Scarsella, G. Sleiter. Polyhedron 10, 2475 (1991).CrossrefGoogle Scholar

  • [76]

    V. V. Grushin, H. Alper. Organometallics 12, 1890 (1993).CrossrefGoogle Scholar

  • [77]

    V. V. Grushin, C. Bensimon, H. Alper. Inorg. Chem. 33, 4804 (1994).CrossrefGoogle Scholar

  • [78]

    C. Amatore, E. Carré, A. Jutand, M. A. M’Barki, G. Meyer. Organometallics 14, 5605 (1995).CrossrefGoogle Scholar

  • [79]

    J. Ugelstadt, A. Berge, H. Listou. Acta Chem. Scand. 19, 208 (1965).CrossrefGoogle Scholar

  • [80]

    P. W. N. M. van Leeuwen, Homogeneous Catalysis Understanding the Art, Kluwer Academic Publishers, Dordrecht (2004).Google Scholar

  • [81]

    G. Cavinato, L. Toniolo, A. Vavasori. Top. Organomet. Chem. 18, 125 (2006).CrossrefGoogle Scholar

About the article

Published Online: 2017-11-21

Published in Print: 2018-02-23

Citation Information: Pure and Applied Chemistry, Volume 90, Issue 2, Pages 315–326, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2017-0706.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kohei Takahashi, Yo Hirataka, Tatsuyoshi Ito, and Nobuharu Iwasawa
Organometallics, 2020
Kohei Takahashi, Kinryo Cho, Asaki Iwai, Tatsuyoshi Ito, and Nobuharu Iwasawa
Chemistry – A European Journal, 2019
Melissa N. Hopkins, Kenichi Shimmei, Katherine B. Uttley, and Wesley H. Bernskoetter
Organometallics, 2018

Comments (0)

Please log in or register to comment.
Log in