Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 90, Issue 3


Producing superhydrophobic/oleophobic coatings on Cultural Heritage building materials

Maria J. Mosquera
  • Corresponding author
  • Nanomaterials Group TEP-243, Departamento de Química-Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) 11510, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis A.M. Carrascosa
  • Nanomaterials Group TEP-243, Departamento de Química-Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) 11510, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nabil Badreldin
  • Nanomaterials Group TEP-243, Departamento de Química-Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz) 11510, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-22 | DOI: https://doi.org/10.1515/pac-2017-0404


Water is the main vehicle of decay agents in Cultural Heritage building materials exposed to weathering. In this work, a simple method to produce superhydrophobic/oleophobic coatings building materials, including under outdoors conditions, has been developed. In addition, a study of the behavior of the developed coatings on different substrates (limestone, granite, concrete and wood) is reported. The addition of 40 nm-SiO2 nanoparticles to a fluoroalkylsilane reduces surface energy and produces a Cassie-Baxter surface in all the materials evaluated. It promotes high static contact angle values of around 160°, and a contact angle hysteresis of around 3°, giving rise to repellence. The building surfaces also demonstrate an excellent self-cleaning performance. The coatings maintain the building materials esthetics as required in the Cultural Heritage field. Finally, the coating presents a long-lasting performance due to condensation reactions producing effective grafting to the four building materials evaluated.

This article offers supplementary material which is provided at the end of the article.

Keywords: 40-nm silica particles; building material; ChemCultHerit; Cultural Heritage; fluoroalkylsilane; long-lasting properties; oleophobicity; self-cleaning; superhydrophobicity

Article note:

A special issue containing invited papers on Chemistry and Cultural Heritage (M.J. Melo, A. Nevin and P. Baglioni, editors.


  • [1]

    L. Gao, T. J. McCarthy. Langmuir 25, 14105 (2009).CrossrefGoogle Scholar

  • [2]

    W. Barthlott, C. Neinhuis, H. Verlot, C. L. Schott. Planta 202, 1 (1997).CrossrefGoogle Scholar

  • [3]

    K. Koch, B. Bhushan, Y. C. Jung, W. Barthlott. Soft Matter 5, 1386 (2009).CrossrefGoogle Scholar

  • [4]

    A. B. D. Cassie, S. Baxter. Trans. Faraday Soc. 40, 546 (1944).CrossrefGoogle Scholar

  • [5]

    C. Kosak Söz, E. Yilgör, I. Yilgör. Polym. (United Kingdom) 62, 118 (2015).Google Scholar

  • [6]

    J. D. Rodrigues, A. Grossi. J. Cult. Herit. 8, 32 (2007).CrossrefGoogle Scholar

  • [7]

    D. Öner, T. J. McCarthy. Langmuir 16, 7777 (2000).CrossrefGoogle Scholar

  • [8]

    G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, H. Y. Erbil. Langmuir 21, 11053 (2005).CrossrefGoogle Scholar

  • [9]

    M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara. Langmuir 21, 7299 (2005).CrossrefGoogle Scholar

  • [10]

    S. S. Latthe, H. Imai, V. Ganesan, A. Venkateswara Rao. Microporous Mesoporous Mater. 130, 115 (2010).CrossrefGoogle Scholar

  • [11]

    D. S. Facio, M. J. Mosquera. ACS Appl. Mater. Interfaces 5, 7517 (2013).CrossrefGoogle Scholar

  • [12]

    M. Callies, D. Quere. Soft Matter 1, 55 (2005).CrossrefGoogle Scholar

  • [13]

    B. P. Dyett, A. H. Wu, R. N. Lamb. ACS Appl. Mater. Interfaces 6, 18380 (2014).CrossrefGoogle Scholar

  • [14]

    A. Chatzigrigoriou, P. N. Manoudis, I. Karapanagiotis. Macromol. Symp. 331332, 158 (2013).Google Scholar

  • [15]

    J. MacMullen, J. Radulovic, Z. Zhang, H. N. Dhakal, L. Daniels, J. Elford, M. A. Leost, N. Bennett. Constr. Build. Mater. 49, 93 (2013).CrossrefGoogle Scholar

  • [16]

    P. Manoudis, S. Papadopoulou, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou. J. Phys. Conf. Ser. 61, 1361 (2007).CrossrefGoogle Scholar

  • [17]

    P. N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, C. Panayiotou. Langmuir 24, 11225 (2008).CrossrefGoogle Scholar

  • [18]

    C.-H. Xue, S.-T. Jia, J. Zhang, J.-Z. Ma. Sci. Technol. Adv. Mater. 11, 33002 (2010).CrossrefGoogle Scholar

  • [19]

    D. Aslanidou, I. Karapanagiotis, C. Panayiotou. Mater. Des. 108, 736 (2016).CrossrefGoogle Scholar

  • [20]

    P. N. Manoudis, A. Tsakalof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou. Surf. Coatings Technol. 203, 1322 (2009).CrossrefGoogle Scholar

  • [21]

    L. De Ferri, P. P. Lottici, A. Lorenzi, A. Montenero, E. Salvioli-Mariani. J. Cult. Herit. 12, 356 (2011).CrossrefGoogle Scholar

  • [22]

    L. A. M. Carrascosa, D. S. Facio, M. J. Mosquera. Nanotechnology 27, 95604 (2016).CrossrefGoogle Scholar

  • [23]

    M. J. Mosquera, D. M. de los Santos, T. Rivas, P. Sanmartín, B. Silva. J. Nano Res. 8, 1 (2009).CrossrefGoogle Scholar

  • [24]

    I. De Rosario, T. Rivas, G. Buceta, J. Feijoo, M. J. Mosquera. Int. J. Archit. Herit. 11, 1166 (2017).Google Scholar

  • [25]

    I. De Rosario, F. Elhaddad, A. Pan, R. Benavides, T. Rivas, M. J. Mosquera. Constr. Build. Mater. 76, 140 (2015).CrossrefGoogle Scholar

  • [26]

    J. F. Illescas, M. J. Mosquera. ACS Appl. Mater. Interfaces 4, 4259 (2012).CrossrefGoogle Scholar

  • [27]

    D. S. Facio, M. Luna, M. J. Mosquera. Microporous Mesoporous Mater. 247, 166 (2017).CrossrefGoogle Scholar

  • [28]

    D. S. Facio, L. A. M. Carrascosa, M. J. Mosquera. Nanotechnology 28, 265601 (2017).CrossrefGoogle Scholar

  • [29]

    UNE-EN 12390-2. Testing hardened concrete. Part 2: making and curing specimens for strength tests, 2009.Google Scholar

  • [30]

    J. Y. Huang, S. H. Li, M. Z. Ge, L. N. Wang, T. L. Xing, G. Q. Chen, X. F. Liu, S. S. Al-Deyab, K. Q. Zhang, T. Chen, Y. K. Lai. J. Mater. Chem. A 3, 2825 (2015).CrossrefGoogle Scholar

  • [31]

    R. S. Berns. Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed., Jonh Wiley, New York, 2000.Google Scholar

  • [32]

    T. Sun, L. Feng, X. Gao, L. Jiang. Acc. Chem. Res. 38, 644 (2005).CrossrefGoogle Scholar

  • [33]

    B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli. Langmuir 24, 2712 (2008).CrossrefGoogle Scholar

  • [34]

    R. M. Wagterveld, C. W. J. Berendsen, S. Bouaidat, J. Jonsmann. Langmuir 22, 10904 (2006).CrossrefGoogle Scholar

  • [35]

    J. D. Brassard, D. K. Sarkar, J. Perron. ACS Appl. Mater. Interfaces 3, 3583 (2011).CrossrefGoogle Scholar

  • [36]

    J. Li, Y. Lu, Z. Wu, Y. Bao, R. Xiao, H. Yu, Y. Chen. Ceram. Int. 42, 9621 (2016).CrossrefGoogle Scholar

  • [37]

    S. Zhou, X. Ding, L. Wu. Prog. Org. Coatings 76, 563 (2013).CrossrefGoogle Scholar

  • [38]

    I. Alfieri, A. Lorenzi, L. Ranzenigo, L. Lazzarini, G. Predieri, P. P. Lottici. Build. Environ. 111, 72 (2017).CrossrefGoogle Scholar

  • [39]

    Y. Li, X. Men, X. Zhu, B. Ge, F. Chu, Z. Zhang. J. Mater. Sci. 51, 2411 (2016).CrossrefGoogle Scholar

  • [40]

    L. D. A. Chumpitaz, L. F. Coutinho, A. J. A. Meirelles. J. Am. Oil Chem. Soc. 76, 379 (1999).CrossrefGoogle Scholar

  • [41]

    R. A. Hayn, J. R. Owens, S. A. Boyer, R. S. McDonald, H. J. Lee. J. Mater. Sci. 46, 2503 (2011).CrossrefGoogle Scholar

  • [42]

    T. Darmanin, F. Guittard. Mater. Today 18, 273 (2015).CrossrefGoogle Scholar

  • [43]

    B. Bhushan, E. K. Her. Langmuir 26, 8207 (2010).CrossrefGoogle Scholar

  • [44]

    L. Xu, R. G. Karunakaran, J. Guo, S. Yang. ACS Appl. Mater. Interfaces 4, 1118 (2012).CrossrefGoogle Scholar

  • [45]

    H. Belanger, T. Darmanin, E. Taffin de Givenchy, F. Guittard. Chem. Rev. 114, 2694 (2014).CrossrefGoogle Scholar

  • [46]

    E. Bormashenko. Adv. Colloid Interface Sci. 222, 92 (2015).CrossrefGoogle Scholar

  • [47]

    R. N. Wenzel. Ind. Eng. Chem. 28, 988 (1936).CrossrefGoogle Scholar

About the article

Published Online: 2017-11-22

Published in Print: 2018-02-23

Citation Information: Pure and Applied Chemistry, Volume 90, Issue 3, Pages 551–561, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2017-0404.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lei Zhou, Siliang Yin, Zhenyu Guo, Nan Yang, Jitong Li, Mingqian Zhang, and Yongmei Zheng
Advanced Materials Interfaces, 2018, Page 1800405
Dimitra Aslanidou, Ioannis Karapanagiotis, and Dimitrios Lampakis
Materials, 2018, Volume 11, Number 4, Page 585

Comments (0)

Please log in or register to comment.
Log in