Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 1

Issues

Making and breaking of phosphorus–phosphorus bonds

Toni GrellORCID iD: https://orcid.org/0000-0001-9162-6487 / Divine Mbom YufanyiORCID iD: https://orcid.org/0000-0001-8889-611X / Anup Kumar AdhikariORCID iD: https://orcid.org/0000-0002-7250-5783 / Menyhárt-Botond SárosiORCID iD: https://orcid.org/0000-0003-4222-0717 / Peter LönneckeORCID iD: https://orcid.org/0000-0003-1335-0897 / Evamarie Hey-HawkinsORCID iD: https://orcid.org/0000-0003-4267-0603
Published Online: 2018-12-20 | DOI: https://doi.org/10.1515/pac-2018-1013

Abstract

In contrast to their mostly unstable isolobal carbon counterparts, oligophosphanide anions, such as M(cyclo-P5tBu4) (M=Li, Na) and M2(P4R4) [M=Na, K; R=Ph, tBu, 2,4,6-Me3C6H2 (Mes)], have unique features, depending on their composition and structure, and are highly suitable building blocks for the synthesis of phosphorus-rich metal compounds. However, alkali metal oligophosphanediides are highly reactive and highly reducing, and a major problem is their tendency for disproportionation in reactions with electrophiles. This, however, can also give rise to a fascinating chemistry of making and breaking of P–P bonds. On the other hand, neutral cyclooligophosphines, such as cyclo-(P5Ph5), are suitable stable ligands for the formation of phosphorus-rich metal complexes.

Keywords: ICPC-22; oligophosphanides; oligophosphines; P-ligands; phosphorus; transition metal complexes

Article note

A collection of invited papers based on presentations at the 22nd International Conference on Phosphorous Chemistry (ICPC-22) held in Budapest, Hungary, 8–13 July 2018.

References

  • [1]

    K. B. Borisenko, D. W. H. Rankin. Inorg. Chem. 42, 7129 (2003).CrossrefGoogle Scholar

  • [2]

    K. B. Dillon, F. Mathey, J. F. Nixon. Phosphorus. The Carbon Copy; from Organophosphorus to Phospha-Organic Chemistry, Wiley, Chichester (1998).Google Scholar

  • [3]

    R. Hoffmann. Angew. Chem. 94, 725 (1982); Angew. Chem. Int. Ed. Engl. 21, 711 (1982).Google Scholar

  • [4]

    M. Baudler, J. Hahn, E. Clef. Z. Naturforsch. 39B, 438 (1984).Google Scholar

  • [5]

    M. Baudler, K. Glinka. Chem. Rev. 93, 1623 (1993).CrossrefGoogle Scholar

  • [6]

    M. Baudler, J. Hahn, V. Arndt, B. Koll, K. Kazmierczak, E. Därr. Z. Anorg. Allg. Chem. 538, 7 (1986).CrossrefGoogle Scholar

  • [7]

    M. Baudler, H. Jachow, K.-F. Tebbe. Z. Anorg. Allg. Chem. 593, 9 (1991).CrossrefGoogle Scholar

  • [8]

    M. Baudler, H. Jachow. Z. Anorg. Allg. Chem. 580, 27 (1990).CrossrefGoogle Scholar

  • [9]

    B. Kesanli, S. P. Mattamana, J. Danis, B. Eichhorn. Inorg. Chim. Acta 358, 3145 (2005).CrossrefGoogle Scholar

  • [10]

    M. Baudler, K. Glinka. Chem. Rev. 94, 1273 (1994).CrossrefGoogle Scholar

  • [11]

    H. Köhler, A. Michaelis. Ber. Dtsch. Chem. Ges. 10, 807 (1877).CrossrefGoogle Scholar

  • [12]

    G. Boeck, T. Peppel, D. Selent, A. Schulz. Nachr. Chem. 65, 1030 (2017).CrossrefGoogle Scholar

  • [13]

    J. J. Daly, L. Maier. Nature 203, 1167 (1964).Google Scholar

  • [14]

    W. Kuchen, H. Buchwald. Angew. Chem. 68, 791 (1956).Google Scholar

  • [15]

    M. Baudler, B. Carlsohn, B. Kloth, D. Koch. Z. Anorg. Allg. Chem. 432, 67 (1977).CrossrefGoogle Scholar

  • [16]

    M. Baudler, B. Carlsohn, W. Böhm, G. Reuschenbach. Z. Naturforsch. 31B, 558 (1976).Google Scholar

  • [17]

    P. R. Hoffman, K. G. Caulton. Inorg. Chem. 14, 1997 (1975).CrossrefGoogle Scholar

  • [18]

    M. Baudler, M. Bock. Z. Anorg. Allg. Chem. 395, 37 (1973).CrossrefGoogle Scholar

  • [19]

    L. R. Smith, J. L. Mills. J. Am. Chem. Soc. 98, 3852 (1976).CrossrefGoogle Scholar

  • [20]

    M. Scherer, D. Stein, F. Breher, J. Geier, H. Schönberg, H. Grützmacher. Z. Anorg. Allg. Chem. 631, 2770 (2005).CrossrefGoogle Scholar

  • [21]

    M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi. J. Am. Chem. Soc. 103, 4587 (1981).CrossrefGoogle Scholar

  • [22]

    M. Baudler, S. Akpapoglou, D. Ouzounis, F. Wasgestian, B. Meinigke, H. Budzikiewicz, H. Münster. Angew. Chem. 100, 288 (1988); Angew. Chem. Int. Ed. Engl. 27, 280 (1988).Google Scholar

  • [23]

    M. Baudler, M. Schnalke, C. Wiaterek. Z. Anorg. Allg. Chem. 585, 7 (1990).CrossrefGoogle Scholar

  • [24]

    H.-G. Ang, L.-L. Koh, Q. Zhang. J. Chem. Soc. Dalton Trans. 2757 (1995).Google Scholar

  • [25]

    H.-G. Ang, S.-G. Ang, Q. Zhang. J. Chem. Soc. Dalton Trans. 3843 (1996).Google Scholar

  • [26]

    H. G. Ang, J. S. Shannon, B. O. West. Chem. Commun. 10 (1965).Google Scholar

  • [27]

    H. G. Ang, B. O. West. Aust. J. Chem. 20, 1133 (1967).CrossrefGoogle Scholar

  • [28]

    H.-G. Ang, S.-G. Ang, W.-L. Kwik, Q. Zhang. J. Organomet. Chem. 485, C10 (1995).CrossrefGoogle Scholar

  • [29]

    C. S. Cundy, M. Green, F. G. A. Stone, A. Taunton-Rigby. J. Chem. Soc. A 1776 (1968).CrossrefGoogle Scholar

  • [30]

    A. Forster, C. S. Cundy, M. Green, F. G. A. Stone. Inorg. Nucl. Chem. Lett. 2, 233 (1966).CrossrefGoogle Scholar

  • [31]

    M. Baudler, F. Salzer, J. Hahn. Z. Naturforsch. 37B, 1529 (1982).Google Scholar

  • [32]

    K.-F. Tebbe, M. Fehér. Z. Naturforsch. 39B, 37 (1984).Google Scholar

  • [33]

    A.-M. Hinke, A. Hinke, W. Kuchen. Z. Naturforsch. 43B, 280 (1988).Google Scholar

  • [34]

    K. Issleib, K. Krech. Chem. Ber. 98, 2545 (1965).CrossrefGoogle Scholar

  • [35]

    K. Issleib, K. Krech. Chem. Ber. 99, 1310 (1966).CrossrefGoogle Scholar

  • [36]

    J. Geier, H. Rüegger, M. Wörle, H. Grützmacher. Angew. Chem. Int. Ed. 42, 3951 (2003); Angew. Chem. 115, 4081 (2003).CrossrefGoogle Scholar

  • [37]

    D. Fenske, H. Z. Schottmüller. Z. Anorg. Allg. Chem. 624, 443 (1998).CrossrefGoogle Scholar

  • [38]

    C. Üffing, C. v. Hänisch, H. Schnöckel. Z. Anorg. Allg. Chem. 626, 1557 (2000).CrossrefGoogle Scholar

  • [39]

    W. Uhl, M. Benter. J. Chem. Soc. Dalton Trans. 3133 (2000).Google Scholar

  • [40]

    A. Schisler, P. Lönnecke, U. Huniar, R. Ahlrichs, E. Hey-Hawkins. Angew. Chem. 113, 4345 (2001); Angew. Chem. Int. Ed. 40, 4217 (2001).CrossrefGoogle Scholar

  • [41]

    R. Wolf, A. Schisler, P. Lönnecke, C. Jones, E. Hey-Hawkins. Eur. J. Inorg. Chem. 3277 (2004).Google Scholar

  • [42]

    Z. Sun, M. Zhu, M. Fujitsuka, A. Wang, C. Shi, T. Majima. ACS Appl. Mater. Interfaces 9, 30583 (2017).CrossrefGoogle Scholar

  • [43]

    G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li. J. Am. Chem. Soc. 138, 14686 (2016).CrossrefGoogle Scholar

  • [44]

    Y. Shi, B. Zhang. Chem. Soc. Rev. 45, 1529 (2016).CrossrefGoogle Scholar

  • [45]

    R. Prins, G. Pirngruber, T. Weber. Chimia 55, 791 (2001).Google Scholar

  • [46]

    S. L. Brock, S. C. Perera, K. L. Stamm. Chem. Eur. J. 10, 3364 (2004).CrossrefGoogle Scholar

  • [47]

    I. I. Abu, K. J. Smith. Appl. Catal. A 328, 58 (2007).CrossrefGoogle Scholar

  • [48]

    V. Jourdain, E. T. Simpson, M. Paillet, T. Kasama, R. E. Dunin-Borkowski, P. Poncharal, A. Zahab, A. Loiseau, J. Robertson, P. Bernier. J. Phys. Chem. B 110, 9759 (2006).CrossrefGoogle Scholar

  • [49]

    H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, B. T. Matthias, Proc. Natl. Acad. Sci. USA 77, 3132 (1980).CrossrefGoogle Scholar

  • [50]

    I. Shirotani, S. Sato, C. Sekine, K. Takeda, I. Inagawa, T. Yagi. J. Phys. Cond. Matt. 17, 7353 (2005).CrossrefGoogle Scholar

  • [51]

    J. Liu, X. Chen, M. Shao, C. An, W. Yu, Y. Qian. J. Cryst. Growth 252, 297 (2003).CrossrefGoogle Scholar

  • [52]

    H. G. von Schnering, W. Hoenle. Chem. Rev. 88, 243 (1988).CrossrefGoogle Scholar

  • [53]

    A. Kircali, P. Lönnecke, E. Hey-Hawkins. Z. Anorg. Allg. Chem. 640, 271 (2014).CrossrefGoogle Scholar

  • [54]

    A. Kircali, R. Frank, S. Gómez-Ruiz, B. Kirchner, E. Hey-Hawkins. ChemPlusChem. 77, 341 (2012).CrossrefGoogle Scholar

  • [55]

    S. Gómez-Ruiz, B. Gallego, E. Hey-Hawkins. Dalton Trans. 2915 (2009).Google Scholar

  • [56]

    R. Wolf, E. Hey-Hawkins. Angew. Chem. Int. Ed. 44, 6241 (2005); Angew. Chem. 117, 6398 (2005).CrossrefGoogle Scholar

  • [57]

    S. Gómez-Ruiz, R. Wolf, E. Hey-Hawkins. Dalton Trans. 1982 (2008).Google Scholar

  • [58]

    S. Gómez-Ruiz, R. Frank, B. Gallego, S. Zahn, B. Kirchner, E. Hey-Hawkins. Eur. J. Inorg. Chem. 739 (2011).Google Scholar

  • [59]

    R. Wolf, E. Hey-Hawkins. Eur. J. Inorg. Chem. 1348 (2006).Google Scholar

  • [60]

    S. Gómez-Ruiz, E. Hey-Hawkins. Dalton Trans. 5678 (2007).Google Scholar

  • [61]

    S. Gómez-Ruiz, S. Zahn, B. Kirchner, W. Böhlmann, E. Hey-Hawkins. Chem. Eur. J. 14, 8980 (2008).CrossrefGoogle Scholar

  • [62]

    I. Jevtovikj, M. B. Sárosi, A. K. Adhikari, P. Lönnecke, E. Hey-Hawkins. Eur. J. Inorg. Chem. 2046 (2015).Google Scholar

  • [63]

    B. Riegel, A. Pfitzner, G. Heckmann, E. Fluck, H. Binder. Phosphorus Sulfur Silicon Relat. Elem. 93, 173 (1994).CrossrefGoogle Scholar

  • [64]

    B. Riegel, A. Pfitzner, G. Heckmann, H. Binder, E. Fluck. Z. Anorg. Allg. Chem. 621, 1989 (1995).CrossrefGoogle Scholar

  • [65]

    H. Binder, B. Schuster, W. Schwarz, K. W. Klinkhammer. Z. Anorg. Allg. Chem. 625, 699 (1999).CrossrefGoogle Scholar

  • [66]

    D. Bongert, H. D. Hausen, W. Schwarz, G. Heckmann, H. Binder. Z. Anorg. Allg. Chem. 622, 1167 (1996).CrossrefGoogle Scholar

  • [67]

    D. Bongert, G. Heckmann, W. Schwarz, H. D. Hausen, H. Binder. Z. Anorg. Allg. Chem. 621, 1358 (1995).CrossrefGoogle Scholar

  • [68]

    I. Jevtovikj, P. Lönnecke, E. Hey-Hawkins. Chem. Commun. 49, 7355 (2013).CrossrefGoogle Scholar

  • [69]

    S. Gomez-Ruiz and E. Hey-Hawkins. Coord. Chem. Rev. 255, 1360 (2011).CrossrefGoogle Scholar

  • [70]

    D. M. Yufanyi, T. Grell, M. Sárosi, P. Lönnecke, E. Hey-Hawkins. Pure Appl. Chem. (2018), manuscript accepted.Google Scholar

About the article

Published Online: 2018-12-20

Published in Print: 2019-01-28


Funding Source: Studienstiftung des Deutschen Volkes

Award identifier / Grant number: T.G.

Funding Source: Deutscher Akademischer Austauschdienst

Award identifier / Grant number: A.K.A.

Support from the Studienstiftung des deutschen Volkes, Funder Id: 10.13039/501100004350 (doctoral grant for T.G.), the Alexander von Humboldt Foundation, Funder Id: 10.13039/100005156 (Georg Forster Research Fellowship for postdoctoral researchers for D.M.Y.), the Deutscher Akademischer Austauschdienst, Funder Id: 10.13039/501100001655 (GSSP Scholarship for A.K.A.) and the Graduate School BuildMoNa is gratefully acknowledged.


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 1, Pages 103–111, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-1013.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Toni Grell and Evamarie Hey‐Hawkins
Nachrichten aus der Chemie, 2019, Volume 67, Number 12, Page 42

Comments (0)

Please log in or register to comment.
Log in