Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 91, Issue 10


Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction

Claudio Mella
  • Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cecilia C. Torres
  • Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cyril Godard / Carmen Claver / Gina Pecchi
  • Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
  • Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Concepción, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristian H. Campos
  • Corresponding author
  • Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-07 | DOI: https://doi.org/10.1515/pac-2018-1225


Catalysts based on porous polymeric microspheres were prepared from N,N′-Bis(3,3′-allyl-salicylidene)-o-phenylenediamine Pd(II) (PdAS) metallo-monomer, styrene (STY), and divinylbenzene (DVB) as co-monomers. The effects of the STY/PdAS mass ratio of co-monomers were investigated to synthesize the optimal catalyst. All the prepared materials were characterized by scanning electron microscopy (SEM), N2 adsorption-desorption isotherms, inductively coupled plasma optical emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), solid-state diffuse-reflectance UV Vis (DRS UV-Vis) spectrometry, and X-ray photoelectron spectroscopy (XPS). Increasing the PdAS content from 1 to 5 wt%, based on the mass feed of monomers, produced well-defined spherical polymer resins with particle diameters of ~200 μm and high surface areas (>500 m2/g). XPS spectra shown a unique Pd2+ signal associated with the PdAS complex immobilized on a porous resin matrix. The catalytic performances of porous polymer microspheres were evaluated for Heck reaction between iodobenzene and methyl acrylate to produce methyl cinnamate, giving up to 100 % selectivity for the trans-isomer. The resin with 5 wt% PdAS showed the best catalytic activity in methyl cinnamate synthesis. Finally, the best catalytic system was evaluated in octinoxate production producing the target product with the same levels of conversion and selectivity for trans-isomer as was detected for methyl cinnamate synthesis.

This article offers supplementary material which is provided at the end of the article.

Keywords: cross-coupling reactions; Eurasia 2018; immobilization; microsphere resins; palladium catalysis; porous polymers

Article note

A collection of invited papers based on presentations at the 15th Eurasia Conference on Chemical Sciences (EuAsC2S-15) held at Sapienza University of Rome, Italy, 5–8 September 2018.


  • [1]

    H.-U. Blaser, A. Indolese, A. Schnyder. Curr. Sci. 78, 1336 (2000).Google Scholar

  • [2]

    J. Magano, J. R. Dunetz. Chem. Rev. 111, 2177 (2011).CrossrefGoogle Scholar

  • [3]

    E.-i. Negishi. J. Organometal. Chem. 653, 34 (2002).CrossrefGoogle Scholar

  • [4]

    Á. Molnár. Chem. Rev. 111, 2251 (2011).CrossrefGoogle Scholar

  • [5]

    C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus. Angew. Chem., Int. Ed. 51, 5062 (2012).CrossrefGoogle Scholar

  • [6]

    C. Bolm. J. Org. Chem. 77, 5221 (2012).CrossrefGoogle Scholar

  • [7]

    C. C. C. Johansson Seechurn, A. DeAngelis, T. J. Colacot. “Introduction to new trends in cross-coupling”, in New Trends in Cross-Coupling: Theory and Applications, T. Colacot (Ed.), Chapter 1, pp. 1, The Royal Society of Chemistry, USA (2015).Google Scholar

  • [8]

    A. Jutand. “Mechanisms of the Mizoroki–Heck reaction”, in The Mizoroki–Heck Reaction, M. Oestreich (Ed.), Chapter 1, pp. 1, John Wiley & Sons, Ltd., Chichester, UK (2009).Google Scholar

  • [9]

    I. P. Beletskaya, A. V. Cheprakov. Chem. Rev. 100, 3009 (2000).CrossrefGoogle Scholar

  • [10]

    P. T. Anastas, M. M. Kirchhoff, T. C. Williamson. Appl. Catal. A. 221, 3 (2001).CrossrefGoogle Scholar

  • [11]

    I. R. Shaikh. J. Catal. 2014, 35 (2014).Google Scholar

  • [12]

    M. J. Hinner, M. Grosche, E. Herdtweck, W. R. Thiel. Z. Anorg. Allg. Chem. 629, 2251 (2003).CrossrefGoogle Scholar

  • [13]

    D. Grekov, T. Vancompernolle, M. Taoufik, L. Delevoye, R. M. Gauvin. Chem. Soc. Rev. 47, 2572 (2018).CrossrefGoogle Scholar

  • [14]

    S. Fukuzumi, Y.-M. Lee, W. Nam. ChemCatChem 10, 1686 (2018).CrossrefGoogle Scholar

  • [15]

    I. F. J. Vankelecom, P. A. Jacobs. “Catalyst immobilization on inorganic supports”, in Chiral Catalyst Immobilization and Recycling, D. E. De Vos, I. F. J. Vankelecom, P. A. Jacobs (Eds.), Chapter 2, pp. 19, Wiley-VCH Verlag GmbH, Weinheim, Germany (2007).Google Scholar

  • [16]

    F. Cozzi. “Catalyst immobilization strategy: some general considerations and a comparison of the main features of different supports”, in Recoverable and Recyclable Catalysts, M. Benaglia (Ed.), Chapter 15, pp. 427, Wiley-VCH Verlag GmbH, Weinheim, Germany (2009).Google Scholar

  • [17]

    X. S. Zhao, X. Y. Bao, W. Guo, F. Y. Lee. Mater. Today 9, 32 (2006).Google Scholar

  • [18]

    A. Zamboulis, N. Moitra, J. J. E. Moreau, X. Cattoen, M. Wong Chi Man. J. Matter. Chem. 20, 9322 (2010).CrossrefGoogle Scholar

  • [19]

    A. Corma, H. García, F. X. Llabrés i Xamena. Chem. Rev. 110, 4606 (2010).CrossrefGoogle Scholar

  • [20]

    V. Polshettiwar, Á. Molnár. Tetrahedron 63, 6949 (2007).CrossrefGoogle Scholar

  • [21]

    A. C. Albéniz, N. Carrera. Eur. J. Inorg. Chem. 2011, 2347 (2011).CrossrefGoogle Scholar

  • [22]

    E. Rangel Rangel, E. M. Maya, F. Sánchez, J. G. de la Campa, M. Iglesias. Green Chem. 17, 466 (2015).CrossrefGoogle Scholar

  • [23]

    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva. ChemistrySelect 2, 1063 (2017).CrossrefGoogle Scholar

  • [24]

    S. Xu, K. Song, T. Li, B. Tan. J. Matter. Chem. A 3, 1272 (2015).CrossrefGoogle Scholar

  • [25]

    P. Das, W. Linert. Coord. Chem. Rev. 311, 1 (2016).CrossrefGoogle Scholar

  • [26]

    M. Keleş, H. Keleş, D. M. Emir. Appl. Organomet. Chem. 29, 543 (2015).CrossrefGoogle Scholar

  • [27]

    A. Gogoi, A. Dewan, G. Borah, U. Bora. New J. Chem. 39, 3341 (2015).CrossrefGoogle Scholar

  • [28]

    N. Shahnaz, B. Banik, P. Das. Tetrahedron Lett. 54, 2886 (2013).CrossrefGoogle Scholar

  • [29]

    W. N. W. Ibrahim, M. Shamsuddin. Cryst. Struc. Theory Appl. 1, 5 (2012).Google Scholar

  • [30]

    P. G. Cozzi. Chem. Soc. Rev. 33, 410 (2004).CrossrefGoogle Scholar

  • [31]

    J. Bi, Y. Dong, D. Meng, D. Zhu, T. Li. Polymer 164, 183 (2019).CrossrefGoogle Scholar

  • [32]

    N. T. S. Phan, M. Van Der Sluys, C. W. Jones. Adv. Synth. Catal. 348, 609 (2006).CrossrefGoogle Scholar

  • [33]

    C. H. Campos, J. B. Belmar, S. E. Jeria, B. F. Urbano, C. C. Torres, J. B. Alderete. RSC Adv. 7, 3398 (2017).CrossrefGoogle Scholar

  • [34]

    J. Wei, X. Zhao, J. Yan. J. Appl. Polym. Sci. 92, 2681 (2004).CrossrefGoogle Scholar

  • [35]

    J. Wei, X. Y. Bai, J. Yan. Macromolecules 36, 4960 (2003).CrossrefGoogle Scholar

  • [36]

    D.-x. Hao, F.-l. Gong, W. Wei, G.-h. Hu, G.-h. Ma, Z.-g. Su. J. Colloid Interface Sci. 323, 52 (2008).CrossrefGoogle Scholar

  • [37]

    Y. Jun, X. Rongnan, Y. Juntan. J. Appl. Polym. Sci. 38, 45 (1989).CrossrefGoogle Scholar

  • [38]

    A. R. Nunes, Í. G. P. Vieira, D. B. Queiroz, A. L. A. B. Leal, S. Maia Morais, D. F. Muniz, J. T. Calixto-Junior, H. D. M. Coutinho. Adv. Pharmacol. Sci. 2018, 9 (2018).Google Scholar

  • [39]

    F. F. He, H. Q. Wang, Y. Y. Wang, X. F Wang, H. S. Zhang, H. L. Li, J. H. Tang. J. Radioanal. Nucl. Chem. 295, 167 (2013).CrossrefGoogle Scholar

  • [40]

    R. P. Jumde, M. Marelli, N. Scotti, A. Mandoli, R. Psaro, C. Evangelisti. J. Mol. Cat. A: Chem. 414, 55 (2016).CrossrefGoogle Scholar

  • [41]

    A. Balanta, C. Godard, C. Claver. Chem. Soc. Rev. 40, 4973 (2011).CrossrefGoogle Scholar

  • [42]

    J. Zhu, J. Zhou, T. Zhao, X. Zhou, D. Chen, W. Yuan. Appl. Catal., A. 352, 243 (2009).CrossrefGoogle Scholar

  • [43]

    M. T. Gokmen, F. E. Du Prez. Prog. Polym. Sci. 37, 365 (2012).CrossrefGoogle Scholar

  • [44]

    B. Brooks. Chem. Eng. Technol. 33, 1737 (2010).CrossrefGoogle Scholar

  • [45]

    S. Shi, T. P. Russell. Adv Mater 30, 1800714 (2018).CrossrefGoogle Scholar

  • [46]

    Y. Cai, W. Yan, X. Peng, M. Liang, L. Yu, H. Zou. J. Appl. Polym. Sci. 136, 46979 (2019).CrossrefGoogle Scholar

  • [47]

    S. C. Rogers, W. C. Mackrodt, T. P. Davis. Polymer 35, 1258 (1994).CrossrefGoogle Scholar

  • [48]

    D. Zaremba, H. Menzel, W. Kowalsky, H.-H. Johannes. Mater. Chem. Phys. 209, 227 (2018).CrossrefGoogle Scholar

  • [49]

    R. Z. Greenley. J. Macromol. Sci. Part A Pure Appl. Chem. 14, 427 (1980).CrossrefGoogle Scholar

  • [50]

    A. Choudhary, S. Kumari, S. Ray. ACS Omega 2, 6636 (2017).CrossrefGoogle Scholar

About the article

Published Online: 2019-08-07

Published in Print: 2019-10-25

Funding Source: CONICYT

Award identifier / Grant number: 21150195

The authors thank CONICYT FONDECYT 1170083, FONDECYT 11170095, FONDECYT 11160468 and Unidad de Equipamiento Científico – MAINI, Universidad Católica del Norte, for the XPS analysis (Conicyt-Programa FONDEQUIP XPS EQM 140044 2014-2016). C. Mella thanks to CONICYT Grant 21150195 for his PhD fellowship. C.C. Torres thanks to CONICYT, PAI/Concurso Nacional inserción de Capital Humano Avanzado en la Academia Convocatoria año 2017 PAI79170027. The authors thank to Dr. Joel B. Alderete of the Instituto de Química de Recursos Naturales – Universidad de Talca, Chile for his collaboration with the ESI-MS/MS analysis.

Citation Information: Pure and Applied Chemistry, Volume 91, Issue 10, Pages 1651–1664, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-1225.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in