Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 10

Issues

How alkali-activated Ti surfaces affect the growth of tethered PMMA chains: a close-up study on the PMMA thickness and surface morphology

Melania Reggente
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastien Kriegel
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenjia He
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Masson
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Geneviève Pourroy
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francesco Mura
  • Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacques Faerber
  • Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniele Passeri
  • Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Rossi
  • Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy
  • Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heinz Palkowski
  • Clausthal University of Technology (TUC), IMET Institute of Metallurgy, Robert-Koch-Strasse 42, 38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adele CarradòORCID iD: https://orcid.org/0000-0003-1094-4075
Published Online: 2019-06-14 | DOI: https://doi.org/10.1515/pac-2019-0223

Abstract

The alkali-activation of titanium (Ti) surfaces performed in a heated sodium hydroxide (NaOH) aqueous solution, results in a porous layer rich in hydroxyl (OH) groups, the structure and porosity of which strongly depend on the reaction time and NaOH concentration used. In this study, a polymerization initiator is covalently grafted on the alkali-activated Ti substrates by using a phosphonic acid as coupling agent and the resulting surfaces are used as scaffolds to drive the growth of tethered poly(methyl methacrylate) (PMMA) chains via a surface initiated atom transfer radical polymerisation (SI-ATRP). A close-up investigation of how different treatment times (1 h, 3 h, 6 h, 12 h, and 24 h) and NaOH concentrations (0.1 M, 0.5 M, 1 M, 2 M, and 5 M) affect the final PMMA morphology and thickness are presented.

Keywords: alkali treatment; ATRP; Eurasia 2018; PMMA; Ti-PMMA interface; titanium

Article note

A collection of invited papers based on presentations at the 15th Eurasia Conference on Chemical Sciences (EuAsC2S-15) held at Sapienza University of Rome, Italy, 5–8 September 2018.

References

  • [1]

    L. Wu, J. Baghdachi. Functional Polymer Coatings: Principles, Methods, and Applications, John Wiley & Sons, Hoboken, NJ, USA (2015).Google Scholar

  • [2]

    J. E. Raynor, J. R. Capadona, D. M. Collard, T. A. Petrie, A. J. García. Biointerphases 4, FA3 (2009).CrossrefGoogle Scholar

  • [3]

    A. Michiardi, G. Hélary, P. C. Nguyen, L. J. Gamble, F. Anagnostou, D. G. Castner, V. Migonney. Acta Biomater. 6, 667 (2010).CrossrefGoogle Scholar

  • [4]

    J. Huang, H. Murata, R. R. Koepsel, A. J. Russell, K. Matyjaszewski. Biomacromolecules 8, 1396 (2007).CrossrefGoogle Scholar

  • [5]

    R. Tejero, E. Anitua, G. Orive. Prog. Polym. Sci. 39, 1406 (2014).CrossrefGoogle Scholar

  • [6]

    P. Cools, N. De Geyter, E. Vanderleyden, F. Barberis, P. Dubruel, R. Morent. Surf. Coat. Technol. 294, 201 (2016).CrossrefGoogle Scholar

  • [7]

    G. D. Parfitt, C. H. Rochester (Eds.). Adsorption from Solution at the Solid/Liquid Interface, Vol. 3, p. 167, Academic Press, London (1983).Google Scholar

  • [8]

    R. A. L. Jones. Polymers at Surfaces and Interfaces, Cambridge University Press, Cambridge, UK (1999).Google Scholar

  • [9]

    M. Godoy-Gallardo, C. Mas-Moruno, K. Yu, J. M. Manero, F. J. Gil, J. N. Kizhakkedathu, D. Rodriguez. Biomacromolecules 16, 483 (2015).CrossrefGoogle Scholar

  • [10]

    C. Sun, F. Zhou, L. Shi, B. Yu, P. Gao, J. Zhang, W. Liu. Appl. Surf. Sci. 253, 1729 (2006).CrossrefGoogle Scholar

  • [11]

    K. Shimizu, K. Malmos, A. H. Holm, S. U. Pedersen, K. Daasbjerg, M. Hinge. ACS Appl. Mater. Interfaces 6, 21308 (2014).CrossrefGoogle Scholar

  • [12]

    K. Shimizu, K. Malmos, S. A. Spiegelhauer, J. Hinke, A. H. Holm, S. U. Pedersen, U. Steen, K. Daasbjerg, M. Hinge. Int. J. Adhes. Adhes. 51, 1 (2014).CrossrefGoogle Scholar

  • [13]

    O. Alageel, M. N. Abdallah, Z. Y. Luo, J. Del-Rio-Highsmith, M. Cerruti, F. Tamimi. Dent. Mater. 31, 105 (2015).CrossrefGoogle Scholar

  • [14]

    M. Reggente, P. Masson, C. Dollinger, H. Palkowski, S. Zafeiratos, L. Jacomine, D. Passeri, M. Rossi, N. E. Vrana, G. Pourroy, A. Carradò. ACS Appl. Mater. Interfaces 10, 5967 (2018).CrossrefGoogle Scholar

  • [15]

    K. Zhang, J. A. Li, K. Deng, T. Liu, J. Y. Chen, N. Huang. Colloids Surf. B: Biointerfaces 108, 295 (2013).CrossrefGoogle Scholar

  • [16]

    V. Vergnat, G. Pourroy, P. Masson. Poly. Int. 62, 878 (2013).CrossrefGoogle Scholar

  • [17]

    Z. Jiaming, L. Rui, H. Jianying, C. Jiayan, L. Xurong, L. Yutai, Z. Yousi. J. Poly. Sci. Part A: Polym. Chem. 45, 4082 (2007).CrossrefGoogle Scholar

  • [18]

    H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. J. Biomed. Mater. Res. 32, 409 (1996).CrossrefGoogle Scholar

  • [19]

    A. Carradò, F. Perrin-Schmitt, Q. V. Le, M. Giraudel, C. Fischer, G. Koenig, A. Morlet. Dent. Mater. 33, 321 (2017).CrossrefGoogle Scholar

  • [20]

    K. Zhang, J. A. Li, K. Deng, T. Liu, J. Y. Chen, N. Huang. Colloids Surf. B: Biointerfaces 108, 295 (2013).CrossrefGoogle Scholar

  • [21]

    G. Guerrero, P. H. Mutin, A. Vioux. Chem. Mater. 13, 4367 (2001).CrossrefGoogle Scholar

  • [22]

    V. Vergnat, T. Roland, G. Pourroy, P. Masson. Mater. Chem. Phys. 147, 261 (2014).CrossrefGoogle Scholar

  • [23]

    S. I. Tanaka, H. Tobimatsu, Y. Maruyama, T. Tanaki, G. Jerkiewicz. ACS Appl. Mater. Interfaces 1, 2312 (2009).CrossrefGoogle Scholar

  • [24]

    M. Wei, H. M. Kim, T. Kokubo, J. H. Evans. Mater. Sci. Eng.: C 20, 125 (2002).CrossrefGoogle Scholar

  • [25]

    L. Jonášová, F. A. Müller, A. Helebrant, J. Strnad, P. Greil. Biomaterials 25, 1187 (2004).CrossrefGoogle Scholar

About the article

Published Online: 2019-06-14

Published in Print: 2019-10-25


Funding Source: DFG

Award identifier / Grant number: PA 837/44-1

Funding Source: Carnot MICA institute

Award identifier / Grant number: TIPOLTI

The authors acknowledge and are grateful for the financial support given by (1) the IdEx 2016 programme for “Post-doctorants” of the University of Strasbourg in the framework of the “Titanium/polymer sheets designed for biomedical applications” (BMM/PN/AM/2016-096b) project; (2) the “NANOTRANSMED” project co-funded by the European Regional Development Fund (ERDF) in the framework of the INTERREG V Upper Rhine program (“Transcending borders with every project”) and by the “Swiss Confederation and the Swiss cantons of Aargau, Basel-Landschaft and Basel-Stadt”; (3) the Carnot MICA institute, Grant Number: TIPOLTI (4) the DFG, within the project, Funder Id: http://dx.doi.org/10.13039/501100001659, PA 837/44-1 “Titanium/polymer sheets designed for biomedical application – Feasibility study” and (5) PHC PROCOPE 2019 Phase II, N° 43456RB.


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 10, Pages 1687–1694, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2019-0223.

Export Citation

© 2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in