Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 91, Issue 11


Kinetics of silver photodiffusion into amorphous S-rich germanium sulphide – neutron and optical reflectivity

Yoshifumi Sakaguchi
  • Corresponding author
  • Comprehensive Research Organization for Science and Society, Neutron Science and Technology Center, Tokai, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidehito Asaoka / Maria Mitkova
Published Online: 2019-05-03 | DOI: https://doi.org/10.1515/pac-2019-0217


Silver photodiffusion is one of the attractive photo-induced changes observed in amorphous chalcogenides. In this research, we focus on amorphous S-rich germanium sulphide and study the kinetics of the silver photodiffusion by neutron reflectivity, as well as optical reflectivity. It was found from the neutron reflectivity profiles with 30 s time resolution that silver dissolved into the germanium sulphide layer, forming a metastable reaction layer between the Ag and the germanium sulphide layers, within 2 min of light exposure. Subsequently, silver slowly diffused from the metastable reaction layer to the germanium sulphide host layer until the Ag concentration in both layers became identical, effectively forming one uniform layer; this took approximately 20 min. Optical reflectivity reveals the electronic band structure of the sample, complementary to neutron reflectivity. It was found from the optical reflectivity measurement that the metastable reaction layer was a metallic product. The product could be Ag8GeS6-like form, which is regarded as the combination of GeS2 and Ag2S, and whose backbone is composed of the GeS4 tetrahedral units and the S atoms. We attribute the first quick diffusion to the capture of Ag ions by the latter S atoms, which is realised by the S–S bond in amorphous S-rich germanium sulphide, while we attribute the second slow diffusion to the formation of the Ag–Ge–S network, in which Ag ions are captured by the former GeS4 tetrahedral units.

Keywords: amorphous chalcogenide; neutron reflectivity; silver photodiffusion; SSC-2018

Article note

A collection of invited papers based on presentations at the 13th International Conference on Solid State Chemistry (SSC-2018), Pardubice, Czech Republic, September 16–21, 2018.


  • [1]

    A. V. Kolobov (Ed.), Photo-Induced Metastability in Amorphous Semiconductors, Wiley-VCH, Weinheim (2003).Google Scholar

  • [2]

    A. V. Kolobov, S. R. Elliott, Adv. Phys. 40, 625 (1991).CrossrefGoogle Scholar

  • [3]

    M. T. Kostyshin, E. V. Mikhailovskaya, P. F. Romanenko, Fiz. Tverdogo Tela 8, 571 (1966) [Sov. Phys. (Solid State) 8, 451 (1966)].Google Scholar

  • [4]

    A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, Appl. Phys. Lett. 29, 677 (1976).CrossrefGoogle Scholar

  • [5]

    J. Hajto, P. J. S. Ewen, R. E. Belford, A. E. Owen, Thin Solid Films 200, 229 (1991).CrossrefGoogle Scholar

  • [6]

    Y. Murakami, K. Arai, M. Wakaki, T. Shibuya, T. Shintaku, Proc. SPIE 9359, 93591N (2015).CrossrefGoogle Scholar

  • [7]

    M. Mitkova, M. N. Kozicki, J. Non-Cryst. Solids 299–302, 1023 (2002).Google Scholar

  • [8]

    M. N. Kozicki, M. Mitkova, I. Valov, in Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, D. Ielmini, R. Waser, (Ed.), p. 483, Wiley, Weinheim (2015).Google Scholar

  • [9]

    Y. Yamamoto, T. Itoh, Y. Hirose, H. Hirose, J. Appl. Phys. 47, 3603 (1976).CrossrefGoogle Scholar

  • [10]

    J. Rennie, S. R. Elliott, C. Jeynes, Appl. Phys. Lett. 48, 1430 (1986).CrossrefGoogle Scholar

  • [11]

    G. Kluge, A. Thomas, R. Klabes, R. Grotzschel, P. Suptitz, J. Non-Cryst. Solids 124, 186 (1990).CrossrefGoogle Scholar

  • [12]

    R. E. Grandi, J. Calas, G. Galibert, M. Averous, Thin Solid Films 218, 259 (1992).CrossrefGoogle Scholar

  • [13]

    J. Calas, R. E. Grandi, G. Galibert, A. Traverse, Nucl. Instrum. Methods Phys. Res. B 63, 462 (1992).CrossrefGoogle Scholar

  • [14]

    T. Wagner, V. Perina, M. Vlcek, M. Frumer, E. Rauhala, J. Saarilahti, P. J. S. Ewen, J. Non-Cryst. Solids 212, 157 (1997).CrossrefGoogle Scholar

  • [15]

    T. Wagner, G. Dale, P. J. S. Ewen, E. Owen, V. Perina, J. Appl. Phys. 87, 7758 (2000).CrossrefGoogle Scholar

  • [16]

    A. Kovalskiy, A. C. Miller, H. Jain, M. Mitkova, J. Am. Ceram. Soc. 91, 760 (2008).CrossrefGoogle Scholar

  • [17]

    Y. Sakaguchi, H. Asaoka, Y. Uozumi, Y. Kawakita, T. Ito, M. Kubota, D. Yamazaki, S. K. M. Ailavajhala, M. R. Latif, M. Mitkova, Can. J. Phys. 92, 654 (2014).CrossrefGoogle Scholar

  • [18]

    Y. Sakaguchi, H. Asaoka, Y. Uozumi, Y. Kawakita, T. Ito, M. Kubota, D. Yamazaki, K. Soyama, M. Ailavajhala, M. R. Latif, K. Wolf, M. Mitkova, W. A. Skoda, J. Phys.: Conf. Ser. 619, 012046 (2015).Google Scholar

  • [19]

    Y. Sakaguchi, H. Asaoka, Y. Uozumi, Y. Kawakita, T. Ito, M. Kubota, D. Yamazaki, K. Soyama, M. Ailavajhala, K. Wolf, M. Mitkova, M. W. A. Skoda, JPS Conf. Proc. 8, 031023 (2015).Google Scholar

  • [20]

    Y. Sakaguchi, H. Asaoka, Y. Uozumi, Y. Kawakita, T. Ito, M. Kubota, D. Yamazaki, K. Soyama, G. Sheoran, and M. Mitkova, Phys. Status Solidi A 213, 1894 (2016).CrossrefGoogle Scholar

  • [21]

    Y. Sakaguchi, H. Asaoka, Y. Uozumi, K. Kondo, D. Yamazaki, K. Soyama, M. Ailavajhala, M. Mitkova, J. Appl. Phys. 120, 055103 (2016).CrossrefGoogle Scholar

  • [22]

    Y. Sakaguchi, H. Asaoka, M. Mitkova, J. Appl. Phys. 122, 235105 (2017).CrossrefGoogle Scholar

  • [23]

    Y. Sakaguchi, T. Hanashima, H. Aoki, H. Asaoka, Al-Amin A. Simon, M. Mitkova, Phys. Status Solidi A 215, 1800049 (2018).CrossrefGoogle Scholar

  • [24]

    O. S. Heavens, Optical Properties of Thin Solid Films, Butterworth, London (1955).Google Scholar

  • [25]

    D. S. Sivia, Elementary Scattering Theory, Oxford University Press, Oxford (2011).Google Scholar

  • [26]

    J. Daillant, A. Gibaud (Eds.), Lecture Note in Physics 770, X-ray and Neutron Reflectivity Principles and Application, Springer-Verlag, Berlin Heidelberg (2009).Google Scholar

  • [27]

    B. T. M. Willis, C. J. Carlile, Experimental Neutron Scattering, Oxford University Press, Oxford (2009).Google Scholar

  • [28]

    L. G. Parratt, Phys. Rev. 95, 359 (1954).CrossrefGoogle Scholar

  • [29]

    F. Abelès, Le Journal de Physique et le Radium 11, 307 (1950).CrossrefGoogle Scholar

  • [30]

    J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, 2nd ed., Wiley, West Sussex (2011).Google Scholar

  • [31]

    M. Tolan, X-ray Scattering from Soft-Matter Thin Films, Springer-Verlag, Telos (1999).Google Scholar

  • [32]

    F. Bridou, J. Gautier, F. Delmotte, M.-F. Ravet, O. Durand, M. Modreanu, Appl. Surf. Sci. 253, 12 (2006).CrossrefGoogle Scholar

  • [33]

    K. Sakurai, M. Mizusawa, M. Ishii, Trans. Mater. Res. Soc. Jpn. 33, 523 (2008).Google Scholar

  • [34]

    M. Takeda, D. Yamazaki, K. Soyama, R. Maruyama, H. Hayashida, H. Asaoka, T. Yamazaki, M. Kubota, K. Aizawa, M. Arai, Y. Inamura, T. Itoh, K. Kaneko, T. Nakamura, T. Nakatani, K. Oikawa, T. Ohhara, Y. Sakaguchi, K. Sakasai, T. Shinohara, J. Suzuki, K. Suzuya, I. Tamura, K. Toh, H. Yamagishi, N. Yoshida, T. Hirano, Chin. J. Phys. 50, 161 (2012).Google Scholar

  • [35]

    S. Nagamiya, Nucl. Instrum. Met. Phys. Res. B 217, 216 (2004).Google Scholar

  • [36]

    H. Takada, K. Haga, M. Teshigawara, T. Aso, S. Meigo, H. Kogawa, T. Naoe, T. Wakui, M. Ooi, M. Harada, M. Futakawa, Quantum Beam Sci 1, 8 (2017).CrossrefGoogle Scholar

  • [37]

    K. Sakasai, S. Satoh, T. Seya, T. Nakamura, K. Toh, H. Yamagishi, K. Soyama, D. Yamazaki, R. Maruyama, T. Oku, T. Ino, H. Kira, H. Hayashida, K. Sakai, S. Itoh, K. Suzuya, W. Kambara, R. Kajimoto, K. Nakajima, K. Shibata, M. Nakamura, T. Otomo, T. Nakatani, Y. Inamura, J. Suzuki, T. Ito, N. Okazaki, K. Moriyama, K. Aizawa, S. Ohira-Kawamura, M. Watanabe, Quantum Beam Sci. 1, 10 (2017).CrossrefGoogle Scholar

  • [38]

    The spectrum is found at: https://asahi-spectra.com/opticalinstrument/max350.html.

  • [39]

    R. K. Pan, H. Z. Tao, H. C. Zang, C. G. Lin, T. J. Zhang, X. J. Zhao, J. Non-Cryst. Solids 357, 2358 (2011).CrossrefGoogle Scholar

  • [40]

    T. Nakatani, Y. Inamura, K. Moriyama, T. Ito, S. Muto, T. Otomo, JPS Conf. Proc. 1, 014010 (2014).Google Scholar

  • [41]

    A. Nelson, J. Appl. Crystallogr. 39, 273 (2006).CrossrefGoogle Scholar

  • [42]

    J. Strong, Procedures in Experimental Physics, pp. 375–376, Prentice-Hall, Inc., New York (1938).Google Scholar

  • [43]

    T. Wagner, M. Vlček, V. Smrčka, P. J. S. Ewen, A. E. Owen, J. Non-Cryst. Solids 164–166, 1255 (1993).Google Scholar

  • [44]

    T. Wagner, E. Márquez, J. Fernández-Pena, J. M. González-Leal, P. J. S. Ewen, S. O. Kasap, Phil. Mag. B 79, 223 (1999).Google Scholar

  • [45]

    L. Červinka, L. Tichý, J. Bergerová, J. Non-Cryst. Solids 232–234, 335 (1998).Google Scholar

  • [46]

    S. R. Elliott, J. Non-Cryst. Solids 130, 85 (1991).CrossrefGoogle Scholar

  • [47]

    Y. Murakami, M. Wakaki, Thin Solid Films 542, 246 (2013).CrossrefGoogle Scholar

  • [48]

    T. Wagner, J. Optoelectron. Adv. Mater. 4, 717 (2002).Google Scholar

  • [49]

    The optical absorption data of amorphous Ge25S75 were estimated from those of amorphous GeS2 (Ge33S67) and GeS4 (Ge20S80) in Ref. 39.Google Scholar

  • [50]

    M. Fox, Optical Properties of Solids, p. 143, Oxford University Press, Oxford (2001).Google Scholar

  • [51]

    G. B. Irani, T. Huen, F. Wooten, Phys. Rev. B 3, 2385 (1971).CrossrefGoogle Scholar

  • [52]

    T. Wágner, M. Frumar, J. Non-Cryst. Solids 116, 269 (1990).CrossrefGoogle Scholar

  • [53]

    T. Wagner, M. Frumar, in Photo-induced Metastability in Amorphous Semiconductors, A. V. Kolobov (Ed.), p. 161, Wiley-VCH, Weinheim (2003).Google Scholar

  • [54]

    G. Petzow, G. Effenberg (Eds.), V.2: Ag-Cu-Pb to Ag-Zn-Zr, in Ternary Alloys; Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagram, p. 189, VCH, Weinheim (1988).Google Scholar

  • [55]

    O. Gorochov, Bull. Soc. Chim. France 6, 2263 (1968).Google Scholar

  • [56]

    T. Kawaguchi, S. Maruno, S. R. Elliott, J. Appl. Phys. 79, 9096 (1996).CrossrefGoogle Scholar

  • [57]

    M. Mitkova, Y. Wang, P. Boolchand, Phys. Rev. Lett. 83, 3848 (1999)CrossrefGoogle Scholar

  • [58]

    Y. Wang, M. Mitkova, D. G. Georgiev, S. Mamedov, P. Boolchand, J. Phys.:Condens. Matter 15, S1573 (2003).Google Scholar

  • [59]

    G. Eulenberger, Monatsh. Chem. 108, 901 (1977).CrossrefGoogle Scholar

  • [60]

    G. Kluge, Phys. Stat. Sol. A 101, 105 (1987).CrossrefGoogle Scholar

  • [61]

    De Nyago Tafen, D. A. Drabold, M. Mitkova, Phys. Rev. B 72, 054206 (2005).CrossrefGoogle Scholar

  • [62]

    Y. Sakaguchi, T. Hanashima, K. Ohara, Al-Amin A. Simon, M. Mitkova, Phys. Rev. Mater. 3, 035601 (2019).CrossrefGoogle Scholar

About the article

Published Online: 2019-05-03

Published in Print: 2019-11-26

Citation Information: Pure and Applied Chemistry, Volume 91, Issue 11, Pages 1821–1835, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2019-0217.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in