Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 2

Issues

Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance

Freda F. Li
  • School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Margaret A. Brimble
  • Corresponding author
  • School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
  • Maurice Wilkins Centre for Molecular Biodiscovery, 3 Symonds Street, Auckland 1010, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-29 | DOI: https://doi.org/10.1515/pac-2018-0704

Abstract

The emergence of multidrug-resistant bacteria has necessitated the urgent need for novel antibacterial agents. Antimicrobial peptides (AMPs), the host-defence molecules of most living organisms, have shown great promise as potential antibiotic candidates due to their multiple mechanisms of action which result in very low or negligible induction of resistance. However, the development of AMPs for clinical use has been limited by their potential toxicity to animal cells, low metabolic stability and high manufacturing cost. Extensive efforts have therefore been directed towards the development of enhanced variants of natural AMPs to overcome these aforementioned limitations. In this review, we present our efforts focused on development of efficient strategies to prepare several recently discovered AMPs including antitubercular peptides. The design and synthesis of more potent and stable AMP analogues with synthetic modifications made to the natural peptides containing glycosylated residues or disulfide bridges are described.

Keywords: antimicrobial peptides; antimicrobial resistance; Distinguished Women in Chemistry and Chemical Engineering; natural products; solid-phase peptide synthesis; unnatural amino acids

References

  • [1]

    H. L. Van Epps. J. Exp. Med. 203, 259 (2006).CrossrefGoogle Scholar

  • [2]

    J. O’Neil. Tackling Drug-Resistant Infections Globally: final report and recommendations; Available from: https://amr-review.org/Publications.html [Last accessed 2 Jun 2018].

  • [3]

    J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock. Nat. Rev. Microbiol. 13, 42 (2014).Google Scholar

  • [4]

    N. R. Gandhi, P. Nunn, K. Dheda, H. S. Schaaf, M. Zignol, D. van Soolingen, P. Jensen. J. Bayona. Lancet 375, 1830 (2010).CrossrefGoogle Scholar

  • [5]

    M. E. Stryjewski, G. R. Corey. Clin. Infect. Dis. 58, S10 (2014).CrossrefGoogle Scholar

  • [6]

    M. A. Cooper, D. Shlae. Nature 472, 32 (2011).CrossrefGoogle Scholar

  • [7]

    M. S. Butler, M. A. Blaskovich, M. A. Cooper. J. Antibiot. 70, 3 (2016).Google Scholar

  • [8]

    E. Patridge, P. Gareiss, M. S. Kinch, D. Hoyer. Drug Discovery Today 21, 204 (2016).CrossrefGoogle Scholar

  • [9]

    L. L. Silver. Clin. Microbiol. Rev. 24, 71 (2011).CrossrefGoogle Scholar

  • [10]

    R. M. Epand, H. J. Vogel. Biochim. Biophys. Acta 1462, 11 (1999).CrossrefGoogle Scholar

  • [11]

    A. Boto, J. M. Pérez de la Lastra, C. C. González. Molecules 23, 311 (2018).CrossrefGoogle Scholar

  • [12]

    M. Sani, F. Separovic. Acc. Chem. Res. 49, 1130 (2016).CrossrefGoogle Scholar

  • [13]

    G. Wang, X. Li, Z. Wang. Nucleic Acids Res. 44, D1087 (2015).Google Scholar

  • [14]

    J. M. Sierra, E. Fusté, F. Rabanal, T. Vinuesa. M. Viñas. Expert Opin. Biol. Ther. 17, 663 (2017).CrossrefGoogle Scholar

  • [15]

    M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn. Front. Cell. Infect. Microbiol. 6, 194 (2016).Google Scholar

  • [16]

    G. D. Brand, R. C. Santos, L. M. Arake, V. G. Silva, L. M. C. Veras, V. Costa, C. H. N. Costa, S. S. Kuckelhaus, J. G. Alexandre, M. J. Feio, J. R. S. A. Leite. Molecules 18, 7058 (2013).CrossrefGoogle Scholar

  • [17]

    H. Ishida, L. T. Nguyen, R. Gopal, T. Aizawa. H. J. Vogel. J. Am. Chem. Soc. 138, 11318 (2016).CrossrefGoogle Scholar

  • [18]

    M. Stawikowski, G. B. Fields. Curr. Protoc. Protein Sci. 26, 18.1.1 (2001).Google Scholar

  • [19]

    J. M. Palomo. RSC Adv. 4, 32658 (2014).CrossrefGoogle Scholar

  • [20]

    K. Dierking, W. Yang, H. Schulenburg. Phil. Trans. R. Soc. B 371, 1 (2016).Google Scholar

  • [21]

    T. Roeder, M. Stanisak, C. Gelhaus, I. Bruchhaus, J. Grötzinger. M. Leippe. Dev. Comp. Immunol. 34, 203 (2010).CrossrefGoogle Scholar

  • [22]

    K. Medini, P. W. Harris, H. Kiel, A. J. Dingley, G. M. Cook. M. A. Brimble. ChemBioChem 16, 328 (2015).CrossrefGoogle Scholar

  • [23]

    H. Yuji, S. Shigeru. Biomol. Concepts 4, 597 (2013).Google Scholar

  • [24]

    F, Åslund, K. D. Berndt, A. Holmgren. J. Biol. Chem. 272, 30780 (1997).CrossrefGoogle Scholar

  • [25]

    H. Y. Kim, V. N. Gladyshev. PLoS Biol. 3, 2080 (2005).Google Scholar

  • [26]

    N. Metanis, E. Keinan, P. E. Dawson. J. Am. Chem. Soc. 128, 16684 (2006).CrossrefGoogle Scholar

  • [27]

    K. Medini, P. W. R. Harris, A. Menorca, K. Hards, G. M. Cook. M. A. Brimble. Chem. Sci. 7, 2005 (2016).CrossrefGoogle Scholar

  • [28]

    V. L. Cavera, T. D. Arthur, D. Kashtanov, M. L. Chikindas. Int. J. Antimicrob. Agents 46, 494 (2015).CrossrefGoogle Scholar

  • [29]

    G. E. Norris, M. L. Patchett. Curr. Opin. Struct. Biol. 40, 112 (2016).CrossrefGoogle Scholar

  • [30]

    W. J. Kelly, R. V. Asmundson, C. M. Huang. J. Appl. Bacteriol. 81, 657 (1996).Google Scholar

  • [31]

    J. Stepper, S. Shastri, T. S. Loo, J. C. Preston, P. Novak, P. Man, C. H. Moore, V. Havlicek, M. L. Patchett, G. E. Norris. FEBS Lett. 585, 645 (2011).CrossrefGoogle Scholar

  • [32]

    H. Wang, W. A. van der Donk. J. Am. Chem. Soc. 133, 16394 (2011).CrossrefGoogle Scholar

  • [33]

    H. Wang, T. J. Oman, R. Zhang, C. V. Garcia De Gonzalo, Q. Zhang, W. A. van der Donk. J. Am. Chem. Soc. 136, 84 (2014).CrossrefGoogle Scholar

  • [34]

    M. A. Brimble, P. J. Edwards, P. W. Harris, G. E. Norris, M. L. Patchett, T. H. Wright, S. Yang, S. E. Carley. Chem. Eur. J. 21, 3556 (2015).CrossrefGoogle Scholar

  • [35]

    Z. Amso, S. W. Bisset, S. Yang, P. W. R. Harris, T. H. Wright, C. D. Navo, M. L. Patchett, G. E. Norris. M. A. Brimble. Chem. Sci. 9, 1686 (2018).CrossrefGoogle Scholar

  • [36]

    S. W. Bisset, S. Yang, Z. Amso, P. W. R. Harris, M. L. Patchett, M. A. Brimble. G. E. Norris. ACS Chem. Biol. 13, 1270 (2018).CrossrefGoogle Scholar

  • [37]

    World Health Organisation (WHO). Global Tuberculosis Report, 2017; available from: http://www.who.int/tb/publications/global_report/en/ [Last accessed 26 Jun 2018].

  • [38]

    G. Sotgiu, R. Centis, L. D’ambrosio, G. B. Migliori. Cold Spring Harbor Perspect. Med. 5, a017822 (2015).CrossrefGoogle Scholar

  • [39]

    A. I. Zumla, S. H. Gillespie, M. Hoelscher, P. P. J. Philips, S. T. Cole, I. Abubakar, T. D. McHugh, M. Schito, M. Maeurer. A. J. Nunn. Lancet Infect. Dis. 14, 327 (2014).CrossrefGoogle Scholar

  • [40]

    D. Quan, G. Nagalingam, R. Payne, J. A. Triccas. Int. J. Infect. Dis. 56, 212 (2017).CrossrefGoogle Scholar

  • [41]

    M. Dong, B. Pfeiffer, K.-H. Altmann. Drug Discovery Today. 22, 585 (2017).CrossrefGoogle Scholar

  • [42]

    S. R. M. Ibrahim, C. C. Min, F. Teuscher, R. Ebel, C. Kakoschke, W. Lin, V. Wray, R. Edrada-Ebel, P. Proksch. Bioorg. Med. Chem. 18, 4947 (2010).CrossrefGoogle Scholar

  • [43]

    P. Pruksakorn, M. Arai, N. Kotoku, C. Vilchèze, A. D. Baughn, P. Moodley, W. R. Jacobs, M. Kobayashi. Bioorg. Med. Chem. Lett. 20, 3658 (2010).CrossrefGoogle Scholar

  • [44]

    E. Gavrish, C. S. Sit, S. Cao, O. Kandror, A. Spoering, A. Peoples, L. Ling, A. Fetterman, D. Hughes, A. Bissell. Chem. Biol. 21, 509 (2014).CrossrefGoogle Scholar

  • [45]

    W. Gao, J.-Y. Kim, J. R. Anderson, T. Akopian, S. Hong, Y.-Y. Jin, O. Kandror, J.-W. Kim, I.-A. Lee, S.-Y. Lee. Antimicrob. Agents Chemother. 59, 880 (2015).CrossrefGoogle Scholar

  • [46]

    Z. G. Khalil, A. A. Salim, E. Lacey, A. Blumenthal, R. J. Capon. Org. Lett. 16, 5120 (2014).CrossrefGoogle Scholar

  • [47]

    L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels, B. P. Conlon, A. Mueller, T. F. Schäberle, D. E. Hughes, S. Epstein. Nature 517, 455 (2015).CrossrefGoogle Scholar

  • [48]

    S.-P. Zhang, L. M. De Leon Rodriguez, I. K. H. Leung, G. M. Cook, P. W. R. Harris, M. A. Brimble. Angew. Chem. Int. Ed. 57, 3631 (2018).CrossrefGoogle Scholar

  • [49]

    I. Kavianinia, L. Kunalingam, P. W. R. Harris, G. M. Cook. M. A. Brimble. Org. Lett. 18, 3878 (2016).CrossrefGoogle Scholar

  • [50]

    P. W. R. Harris, G. M. Cook, I. K. H. Leung. M. A. Brimble. Aust. J. Chem. 70, 172 (2017).CrossrefGoogle Scholar

  • [51]

    C. E. Schumacher, P. W. R. Harris, X.-B. Ding, B. Krause, T. H. Wright, G. M. Cook, D. P. Furkert. M. A. Brimble. Org. Biomol. Chem. 15, 8755 (2017).CrossrefGoogle Scholar

  • [52]

    G. Daletos, R. Kalscheuer, H. Koliwer-Brandl, R. Hartmann, N. J. de Voogd, V. Wray, W. Lin. P. Proksch. J. Nat. Prod. 78, 1910 (2015).CrossrefGoogle Scholar

  • [53]

    J. Jurczak, A. Golebiowski. Chem. Rev. 89, 149 (1989).CrossrefGoogle Scholar

  • [54]

    D. Pappo, M. Vartanian, S. Lang, Y. Kashman. J. Am. Chem. Soc. 127, 7682 (2005).CrossrefGoogle Scholar

  • [55]

    T. Nakazawa, T. Suzuki, M. Ishii. Tetrahedron Lett. 1997, 38, 8951.CrossrefGoogle Scholar

  • [56]

    D. E. DeMong, R. M. Williams. J. Am. Chem. Soc. 2003, 125, 8561.CrossrefGoogle Scholar

  • [57]

    P. Pruksakorn, M. Arai, L. Liu, P. Moodley, W. R. Jacobs Jr. M. Kobayashi. Biol. Pharm. Bull. 34, 1287 (2011).CrossrefGoogle Scholar

  • [58]

    M. El Hadrami, J. Lavergne, P. Viallefont, M. Y. A. Itto. A. Hasnaoui. Tetrahedron Lett. 32, 3985 (1991).CrossrefGoogle Scholar

  • [59]

    Z. Wei, L. Xiangpeng, D. Ning, L. Yingxia. J. Pept. Sci. 18, 163 (2012).CrossrefGoogle Scholar

  • [60]

    K. Hung, P. W. R. Harris. M. A. Brimble. J. Org. Chem. 75, 8728 (2010).CrossrefGoogle Scholar

  • [61]

    K. Hung, P. W. R. Harris. M. A. Brimble. Org. Lett. 14, 5784 (2012).CrossrefGoogle Scholar

  • [62]

    K. Ko, S. Wagner, S. Yang, D. P. Furkert. M. A. Brimble. J. Org. Chem. 80, 8631 (2015).CrossrefGoogle Scholar

  • [63]

    J. D. Hegemann, M. Zimmermann, X. Xie, M. A. Marahiel. Acc. Chem. Res. 48, 1909 (2015).CrossrefGoogle Scholar

  • [64]

    E. Gavrish, C. Sit, S. Cao, O. Kandror, A. Spoering, A. Peoples, L. Ling, A. Fetterman, D. Hughes, A. Bissell, H. Torrey, T. Akopian, A. Mueller, S. Epstein, A. Goldberg, J. Clardy. K. Lewis. Chem. Biol. 21, 509 (2014).CrossrefGoogle Scholar

  • [65]

    S. Lear, T. Munshi, A. S. Hudson, C. Hatton, J. Clardy, J. A. Mosely, T. J. Bull, C. S. Sit, S. L. Cobb. Org. Biomol. Chem. 14, 4534 (2016).CrossrefGoogle Scholar

  • [66]

    L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels, B. P. Conlon, A. Mueller, T. F. Schäberle, D. E. Hughes, S. Epstein, M. Jones, L. Lazarides, V. A. Steadman, D. R. Cohen, C. R. Felix, K. A. Fetterman, W. P. Millett, A. G. Nitti, A. M. Zullo, C. Chen, K. Lewis. Nature 517, 455 (2015).CrossrefGoogle Scholar

  • [67]

    A. M. Giltrap, L. J. Dowman, G. Nagalingam, J. L. Ochoa, R. G. Linington, W. J. Britton, R. J. Payne. Org. Lett. 18, 2788 (2016).CrossrefGoogle Scholar

  • [68]

    K. Jin, I. H. Sam, K. H. L. Po, D. Lin, E. H. Ghazvini Zadeh, S. Chen, Y. Yuan, X. Li. Nat. Commun. 7, 12394 (2016).CrossrefGoogle Scholar

  • [69]

    K. Jin, K. H. L. Po, S. Wang, J. A. Reuven, C. N. Wai, H. T. Lau, T. H. Chan, S. Chen, X. Li. Bioorg. Med. Chem. 25, 4990 (2017).CrossrefGoogle Scholar

  • [70]

    A. Parmar, A. Iyer, C. S. Vincent, D. Van Lysebetten, S. H. Prior, A. Madder, E. J. Taylor, I. Singh. Chem. Commun. 52, 6060 (2016).CrossrefGoogle Scholar

  • [71]

    A. Parmar, S. H. Prior, A. Iyer, C. S. Vincent, D. Van Lysebetten, E. Breukink, A. Madder, E. J. Taylor, I. Singh. Chem. Commun. 53, 2016 (2017).CrossrefGoogle Scholar

  • [72]

    A. Parmar, A. Iyer, D. G. Lloyd, C. S. Vincent, S. H. Prior, A. Madder, E. J. Taylor, I. Singh. Chem. Commun. 53, 7788 (2017).CrossrefGoogle Scholar

  • [73]

    S. A. H. Abdel Monaim, Y. E. Jad, E. J. Ramchuran, A. El-Faham, T. Govender, H. G. Kruger, B. G. de la Torre, F. Albericio. ACS Omega 1, 1262 (2016).CrossrefGoogle Scholar

  • [74]

    Y. E. Jad, G. A. Acosta, T. Naicker, M. Ramtahal, A. El-Faham, T. Govender, H. G. Kruger, B. G. de la Torre, F. Albericio. Org. Lett. 17, 6182 (2015).CrossrefGoogle Scholar

  • [75]

    C. Wu, Z. Pan, G. Yao, W. Wang, L. Fang, W. Su. RSC Adv. 7, 1923 (2017).CrossrefGoogle Scholar

  • [76]

    K. H. Chen, S. P. Le, X. Han, J. M. Frias, J. S. Nowick. Chem. Commun. 53, 11357 (2017).CrossrefGoogle Scholar

  • [77]

    S. A. H. Abdel Monaim, E. J. Ramchuran, A. El-Faham, F. Albericio, B. G. de la Torre. J. Med. Chem. 60, 7476 (2017).CrossrefGoogle Scholar

  • [78]

    G. C. Girt, A. Mahindra, Al Jabri, Zaaima J. H., S. C. De, M. R. Oggioni, A. G. Jamieson. Chem. Commun. 54, 2767 (2018).CrossrefGoogle Scholar

  • [79]

    Y. Zong, X. Sun, H. Gao, K. J. Meyer, K. Lewis, Y. Rao. J. Med. Chem. 61, 3409 (2018).CrossrefGoogle Scholar

  • [80]

    A. Parmar, A. Iyer, S. H. Prior, D. G. Lloyd, E. T. Leng Goh, C. S. Vincent, T. Palmai-Pallag, C. Z. Bachrati, E. Breukink, A. Madder, R. Lakshminarayanan, E. J. Taylor, I. Singh. Chem. Sci. 8, 8183 (2017).CrossrefGoogle Scholar

  • [81]

    K. Jin, K. H. L. Po, W. Y. Kong, C. H. Lo, C. W. Lo, H. Y. Lam, A. Sirinimal, J. A. Reuven, S. Chen, X. Li. Bioorg. Med. Chem. 26, 1062 (2018).CrossrefGoogle Scholar

  • [82]

    A. Parmar, R. Lakshminarayanan, A. Iyer, V. Mayandi, E. T. Leng Goh, D. G. Lloyd, M. L. S. Chalasani, N. K. Verma, S. H. Prior, R. W. Beuerman, A. Madder, E. J. Taylor, I. Singh. J. Med. Chem. 61, 2009 (2018).CrossrefGoogle Scholar

  • [83]

    H. Yang, K. H. Chen, J. S. Nowick. ACS Chem. Biol. 11, 1823 (2016).CrossrefGoogle Scholar

  • [84]

    H. Yang, D. R. Du Bois, J. W. Ziller, J. S. Nowick. Chem. Commun. 53, 2772 (2017).CrossrefGoogle Scholar

  • [85]

    S. A. H. Abdel Monaim, Y. E. Jad, A. El-Faham, B. G. de la Torre, F. Albericio. Bioorg. Med. Chem. 26, 2788 (2018).CrossrefGoogle Scholar

  • [86]

    D. J. Atkinson, B. J. Naysmith, D. P. Furkert, M. A. Brimble. Beilstein J. Org. Chem. 12, 2325 (2016).CrossrefGoogle Scholar

About the article

Published Online: 2019-01-29

Published in Print: 2019-02-25


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 2, Pages 181–198, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0704.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in