Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 91, Issue 2


Anticancer properties of gold complexes with biologically relevant ligands

Vanesa Fernández-Moreira
  • Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna, No. 12, E-50009 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raquel P. Herrera
  • Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna, No. 12, E-50009 Zaragoza, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Concepción Gimeno
  • Corresponding author
  • Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna, No. 12, E-50009 Zaragoza, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-30 | DOI: https://doi.org/10.1515/pac-2018-0901


The present review highlights our findings in the field of antitumor gold complexes bearing biologically relevant molecules, such as DNA-bases, amino acids or peptide derivatives. The results show that very active complexes are achieved with this sort of ligands in several cancer cells. In these compounds the gold center is bonded to these biological molecules mainly through a sulfur atom belonging to a cysteine moiety or to a thionicotinic moiety as result of the functionalization of the biological compounds, and additionally phosphines or N-heterocyclic carbenes are present as ancillary ligands. These robust compounds are stable in the biological media and can be transported to their targets without previous deactivation. The presence of these scaffolds represents a good approach to obtain complexes with improved biologically activity, better transport and biodistribution to cancer cells. Thioredoxin reductase (TrxR) has been shown as the main target for these complexes and in some cases, DNA interactions has been also observed.

Keywords: amino acids; antitumor compounds; Distinguished Women in Chemistry and Chemical Engineering; DNA-base derivatives; gold complexes; peptides


  • [1]

    Z. Huaizhi, N. Yuantao. Gold Bull. 34, 24 (2001).CrossrefGoogle Scholar

  • [2]

    C. Orvig, M. J. Abrams. Chem. Rev. 99, 2201 (1999).CrossrefGoogle Scholar

  • [3]

    N. L. Gottlieb. J. Rheumatol. Suppl. 8, 99 (1982).Google Scholar

  • [4]

    X. Wang, Z. Guo. Chem. Soc. Rev. 42, 202 (2013).CrossrefGoogle Scholar

  • [5]

    I. Ott. Coord. Chem. Rev. 253, 1670 (2009).CrossrefGoogle Scholar

  • [6]

    S. Nobili, E. Mini, I. Landini, C. Gabbiani, A. Casini, L. Messori. Med. Res. Rev. 30, 550 (2010).Google Scholar

  • [7]

    C.-M. Che, R. W.-Y. Sun. Chem. Commun. 47, 9554 (2011).CrossrefGoogle Scholar

  • [8]

    A. Casini, L. Messori. Curr. Top. Med. Chem. 11, 2647 (2011).CrossrefGoogle Scholar

  • [9]

    B. B. Bertrand, A. Casini. Dalton Trans. 43, 4209 (2014).CrossrefGoogle Scholar

  • [10]

    T. Zou, C. T. Lum, C.-N. Lok, J.-J. Zhang, C. M. Che. Chem. Soc. Rev. 44, 8786 (2015).CrossrefGoogle Scholar

  • [11]

    https://clinicaltrials.gov/ct2/show/NCT01419691 (02/09/2018).

  • [12]

    P. T. Barnard, S. J. Berners-Price. Coord. Chem. Rev. 251, 1889 (2007).CrossrefGoogle Scholar

  • [13]

    S. Nobili, E. Mini, I. Landini, C. Gabbiani, A. Casini, L. Messori. Med. Chem. Rev. 30, 550 (2010).Google Scholar

  • [14]

    L. Dalla Via, C. Nardon, D. Fregona. Future Med. Chem. 4, 525 (2012).CrossrefGoogle Scholar

  • [15]

    I. Ott, X. Quian, Y. Xu, V. Vlecker, I. J. Marques, D. Kubutat, J. Will, W. S. Sheldrick, P. Jesse, A. Prokop, C. P. Bagowski. J. Med. Chem. 52, 763 (2009).CrossrefGoogle Scholar

  • [16]

    L. Ronconi, L. Giovagnini, C. Marzano, F. Bettìo, R. Graziani, G. Pilloni, D. Fregona. Inorg. Chem. 44, 1867 (2005).CrossrefGoogle Scholar

  • [17]

    S. J. Berners-Price, P. J. Sadler. Inorg. Chem. 25, 3822 (1986).CrossrefGoogle Scholar

  • [18]

    S. Urig, K. Fritz-Wolf, R. Réau, C. Herold-Mende, K. Tóth, E. Davioud-Charvet, K. Becker. Angew. Chem. Int. Ed. 45, 1881 (2006).CrossrefGoogle Scholar

  • [19]

    M. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton, A. H. White. Dalton Trans. 3708 (2006).Google Scholar

  • [20]

    K. Yan, C.-N. Lok, K. Bierla, C.-M. Che. Chem. Commun. 46, 7691 (2010).CrossrefGoogle Scholar

  • [21]

    A. Meyer, C. P. Bagowski, M. Kokoschka, M. Stefanopoulou, H. Alborzinia, S. Can, D. H. Vlecken, W. S. Sheldrick, S. Wölfl, I. Ott. Angew. Chem. Int. Ed. Engl. 51, 8895 (2012).CrossrefGoogle Scholar

  • [22]

    G. Marcon, S. Carotti, M. Coronnello, L. Messori, E. Mini, P. Orioli, T. Mazzei, M. A. Cinellu, G. Minghetti. J. Med. Chem. 45, 1672 (2002).CrossrefGoogle Scholar

  • [23]

    R. H. Holm, P. Kennepohl, E. I. Solomon. Chem. Rev. 96, 2239 (1996).CrossrefGoogle Scholar

  • [24]

    G. Henkel, B. Krebs. Chem. Rev. 104, 801 (2004).CrossrefGoogle Scholar

  • [25]

    H. B. Kaatz, N. Metzler-Nolte (Eds). Concepts and Models in Bioinorganic Chemistry, Wiley-VCH, Weinheim, Germany (2006).Google Scholar

  • [26]

    C. F. Shaw. Chem. Rev. 99, 2589 (1999).CrossrefGoogle Scholar

  • [27]

    M. F. Fillat, M. C. Gimeno, A. Laguna, E. Latorre, L. Ortego, M. D. Villacampa. Eur. J. Inorg. Chem. 1487 (2011).Google Scholar

  • [28]

    L. Ortego, F. Cardoso, S. Martins, M. F. Fillat, A. Laguna, M. Meireles, M. D. Villacampa, M. C. Gimeno, J. Inorg. Biochem. 130, 32 (2014).CrossrefGoogle Scholar

  • [29]

    H. Wang, Y. Wang. Biochemistry 48, 2290 (2009).CrossrefGoogle Scholar

  • [30]

    B. Yuan, T. R. O’Connor, Y. Wang. ACS Chem. Biol. 5, 1021 (2010).CrossrefGoogle Scholar

  • [31]

    K. Nomiya, S. Yamamoto, R. Noguchi, H. Yokoyama, N. Ch. Kasuga, K. Ohyama, Ch. Kato. J. Inorg. Biochem. 95, 208 (2003).CrossrefGoogle Scholar

  • [32]

    S. Ray, R. Mohan, J. K. Singh, M. K. Samantaray, M. M. Shaikh, D. Panda, P. Ghosh. J. Am. Chem. Soc. 129, 15042 (2007).CrossrefGoogle Scholar

  • [33]

    M. B. Harbut, C. Vilchèze, X. Luo, M. E. Hensler, H. Guo, B. Yang, A. K. Chatterjee, V. Nizet, W. R. Jacobs Jr., P. G. Schultz, F. Wang. PNAS 112, 4453 (2015).CrossrefGoogle Scholar

  • [34]

    D. R. van Staveren, N. Metzler-Nolte. Chem. Rev. 104, 5931 (2004).CrossrefGoogle Scholar

  • [35]

    H. Goitia, Y. Nieto, M. D. Villacampa, C. Kasper, A. Laguna, M. C. Gimeno. Organometallics 32, 6069 (2013).CrossrefGoogle Scholar

  • [36]

    J. E. Aguado, M. C. Gimeno, A. Laguna, M. D. Villacampa. Gold Bull. 42, 302 (2009).CrossrefGoogle Scholar

  • [37]

    M. C. Gimeno, A. Laguna, C. Sarroca, P. G. Jones. Inorg. Chem. 32, 5926 (1993).CrossrefGoogle Scholar

  • [38]

    W. Liu, R. Gust. Chem. Soc. Rev. 42, 755 (2013).CrossrefGoogle Scholar

  • [39]

    K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs. Chem. Rev. 109, 385 (2009).Google Scholar

  • [40]

    L. Janovec, M. Kožurková, D. Sabolová, J. Ungvarský, H. Paulíková, J. Plšíková, Z. Vantová, J. Imrich. Bioorg. Med. Chem. 19, 1790 (2011).CrossrefGoogle Scholar

  • [41]

    M. C. Gimeno, A. Laguna, R. Visbal. Organometallics 31, 7146 (2012).CrossrefGoogle Scholar

  • [42]

    R. Visbal, V. Fernández-Moreira, I. Marzo, A. Laguna, M. C. Gimeno. Dalton Trans. 45, 15026 (2016).CrossrefGoogle Scholar

  • [43]

    Y. Li, G.-F. Liu, C.-P. Tan, L.-N. Ji, Z.-W. Mao. Metallomics 6, 1460 (2014).CrossrefGoogle Scholar

  • [44]

    P. J. Barnard, L. E. Wedlock, M. V. Baker, S. J. Berners-Price, D. A. Joyce, B. W. Skelton, J. H. Steer. Angew. Chem., Int. Ed. 45, 5966 (2006).CrossrefGoogle Scholar

  • [45]

    J. Aaseth, M. Haugen, M. Førre. Analyst 123, 3 (1998).CrossrefGoogle Scholar

  • [46]

    L. Eloy, A.-S. Jarrousse, M.-L. Teyssot, A. Gautier, L. Morel, C. Jolivalt, T. Cresteil, S. Roland, ChemMedChem 7, 805 (2012).CrossrefGoogle Scholar

  • [47]

    Y. Li, G.-F. Liu, C.-P. Tan, L.-N. Ji, Z.-W. Mao. Metallomics 6, 1460 (2014).CrossrefGoogle Scholar

  • [48]

    I. Issaeva, A. A. Cohen, E. Eden, C. Cohen-Saidon, T. Danon, L. Cohen, U. Alon, PLoS One 5, e13524 (2010).CrossrefGoogle Scholar

  • [49]

    B. Đ. Glišić, U. Rychlewska, M. I. Djuran, Dalton Trans. 41, 6887 (2012).CrossrefGoogle Scholar

  • [50]

    J. Lemke, A. Pinto, P. Niehoff, V. Vasylyeva, N. Metzler-Nolte. Dalton Trans. 35, 7063 (2009).Google Scholar

  • [51]

    N. Sewald, H. Jakubke (Eds.) Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, Germany (2002).Google Scholar

  • [52]

    K. Nomiya, R. Noguchi, T. Shigeta, Y. Kondoh, K. Tsuda, K. Ohsawa, N. Chikaraishi-Kasuga, M. Oda. Bull. Chem. Soc. Jpn. 73, 1143 (2000).CrossrefGoogle Scholar

  • [53]

    A. Gutiérrez, J. Bernal, M. D. Villacampa, C. Cativiela, A. Laguna, M. C. Gimeno. Inorg. Chem. 52, 6473 (2013).CrossrefGoogle Scholar

  • [54]

    A. Gutiérrez, L. Gracia-Fleta, I. Marzo, C. Cativiela, A. Laguna, M. C. Gimeno. Dalton Trans. 43, 17054 (2014).CrossrefGoogle Scholar

  • [55]

    L. Ortego, M. Meireles, C. Kasper, A. Laguna, M. D. Villacampa, M. C. Gimeno. J. Inorg. Biochem. 156, 133 (2016).CrossrefGoogle Scholar

  • [56]

    A. J. Verbiscar, B. Witkop. J. Org. Chem. 35, 1924 (1970).CrossrefGoogle Scholar

  • [57]

    A. Gutiérrez, C. Cativiela, A. Laguna, M. C. Gimeno. Dalton Trans. 45, 13483 (2016).CrossrefGoogle Scholar

  • [58]

    H. Goitia, A. Laguna, M. C. Gimeno. Inorg. Chim. Acta 475, 53 (2018).CrossrefGoogle Scholar

  • [59]

    G. Jaouen, A. Vessières, I. S. Butler. Acc. Chem. Res. 26, 361 (1993).CrossrefGoogle Scholar

  • [60]

    H. B. Kraatz, J. Lusztyk, G. D. Enright. Inorg. Chem. 36, 2400 (1997).CrossrefGoogle Scholar

  • [61]

    H. Dialer, K. Polborn, W. Ponikwar, K. Sünkel, W. Beck. Chem. Eur. J. 8, 691 (2002).CrossrefGoogle Scholar

  • [62]

    D. Savage, G. Malone, S. R. Alley, J. F. Gallagher, A. Goel, P. N. Kelly, H. Mueller-Bunz, P. T. M. Kenny. J. Organomet. Chem. 691, 463 (2006).CrossrefGoogle Scholar

  • [63]

    P. Saweczko, G. D. Enright, H. B. Kraatz. Inorg. Chem. 40, 4409 (2001).CrossrefGoogle Scholar

  • [64]

    C. Drexler, M. Milne, E. Morgan, M. Jennings, H. B. Kraatz. Dalton Trans. 4370 (2009).Google Scholar

  • [65]

    S. D. Köster, J. Dittrich, G. Gasser, N. Hüsken, I. C. H. Castañeda, J. L. Jios, C. O. Della Védova, N. Metzler-Nolte. Organometallics 27, 6326 (2008).CrossrefGoogle Scholar

  • [66]

    J. T. Chantson, M. V. V. Falzacappa, S. Crovella, N. Metzler-Nolte. J. Organomet. Chem. 690, 4564 (2005).CrossrefGoogle Scholar

  • [67]

    E. Bucci, L. D. Napoli, G. D. Fabio, A. Meceré, D. Montesarchio, A. Romanelli, G. Piccialli, M. Varra. Tetrahedron 55, 14435 (1999).CrossrefGoogle Scholar

  • [68]

    C. E. Immoos, S. J. Lee, M. W. Grinstaff. J. Am. Chem. Soc. 126, 10814 (2004).CrossrefGoogle Scholar

  • [69]

    I. Wilner, E. Katz. Angew. Chem. Int. Ed Engl. 39, 1180 (2000).CrossrefGoogle Scholar

  • [70]

    P. Kopf-Maier, H. Kopf. Chem. Rev. 87, 1137 (1987).CrossrefGoogle Scholar

  • [71]

    E. I. Edwards, R. Epton, G. Marr. J. Organomet. Chem. 107, 351 (1976).CrossrefGoogle Scholar

  • [72]

    G. Jaouen, S. Top, A. Vessieres, G. Leclercq, M. J. McGlinchey. Curr. Med. Chem. 11, 2505 (2004)CrossrefGoogle Scholar

  • [73]

    S. Top, A. Vessieres, G. Leclercq, J. Quivy, J. Tang, J. Vaissermann, M. Huche, G. Jaouen. Chem. Eur. J. 9, 5223 (2003).CrossrefGoogle Scholar

  • [74]

    C. Biot, G. Glorian, L. A. Maciejewski, J. S. Brocard, O. Domarle, G. Blampain, P. Millet, A. J. Georges, H. Abessolo, D. Dive, J. Lebibi. J. Med. Chem. 40, 3715 (1997).CrossrefGoogle Scholar

  • [75]

    C. Biot, L. Delhaes, D. Taramelli, I. Forfar-Bares, L. A. Maciejewski, M. Boyce, G. Nowogrocki, J. S. Brocard, N. Basilico, P. Olliaro, T. J. Egan. Mol. Pharmaceutics 2, 185 (2005).CrossrefGoogle Scholar

  • [76]

    M. C. Gimeno, H. Goitia, A. Laguna, M. E. Luque, M. D. Villacampa, C. Sepúlveda, M. Meireles. J. Inorg. Biochem. 105, 1373 (2011).CrossrefGoogle Scholar

  • [77]

    N. Sewald, H. Jakubke, (Eds.) Peptides: Chemistry and Biology, 2nd edition, Wiley-VCH, Weinheim (2009).Google Scholar

  • [78]

    N. L. Benoiton, (Ed.) Chemistry of Peptide Synthesis, CRC Press, Boca Raton (2006).Google Scholar

  • [79]

    F. Noor, A. Wüstholz, R. Kinscherf, N. Metzler-Nolte. Angew. Chem. Int. Ed. 44, 2429 (2005).CrossrefGoogle Scholar

  • [80]

    A. Gross, M. Neukamm, N. Metzler-Nolte. Dalton Trans. 40, 1382 (2011).CrossrefGoogle Scholar

  • [81]

    M. Neukamm, A. Pinto, N. Metzler-Nolte. Chem. Commun. 232 (2008).Google Scholar

  • [82]

    L. Gaviglio, A. Gross, N. Metzler-Nolte, M. Ravera. Metallomics 4, 260 (2012).CrossrefGoogle Scholar

  • [83]

    M. N. Kouodom, L. Roncani, M. Colegato, C. Nardon, L. Marchiò, Q. P. Dou, D. Aldinucci, F. Formaggio, D. Fregona. J. Med. Chem. 55, 2212 (2012).CrossrefGoogle Scholar

  • [84]

    A. Gutiérrez, M. C. Gimeno, I. Marzo, N. Metzler-Nolte. Eur. J. Inorg. Chem. 2512 (2014).Google Scholar

  • [85]

    A. Gutiérrez, I. Marzo, C. Cativiela, A. Laguna, M. C. Gimeno. Chem. Eur. J. 21, 11088 (2015).CrossrefGoogle Scholar

About the article

Published Online: 2018-11-30

Published in Print: 2019-02-25

Citation Information: Pure and Applied Chemistry, Volume 91, Issue 2, Pages 247–269, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0901.

Export Citation

©2018 IUPAC & De Gruyter, Berlin/Boston. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Juan Jesús González, Enrique Ortega, Matthias Rothemund, Madeleine Gold, Consuelo Vicente, Concepción de Haro, Delia Bautista, Rainer Schobert, and José Ruiz
Inorganic Chemistry, 2019
Helmut Sigel and Astrid Sigel
Zeitschrift für Naturforschung B, 2019, Volume 74, Number 6, Page 461

Comments (0)

Please log in or register to comment.
Log in