Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 4

Issues

Synthesis of pyrrolizidines and indolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides

Carmen Nájera
  • Corresponding author
  • Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Miguel Sansano
  • Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
  • Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-17 | DOI: https://doi.org/10.1515/pac-2018-0710

Abstract

Different multicomponent 1,3-dipolar cycloadditions (1,3-DC) of cyclic α-amino acid derivatives with aldehydes and dipolarophiles have been described as efficient and simple methodologies for the synthesis of the pyrrolidine unit of pyrrolizidines and indolizidines. When free cyclic α-amino acids are used, a thermal promoted decarboxylative process generates in situ the corresponding non-stabilized azomethine ylides, which afforded the corresponding pyrrolizidines and indolizidines with a hydrogen in the bicyclic units. This methodology has been employed to the synthesis of complex systems including spiro derivatives when ketones are used as carbonyl component. In addition, working with cyclic α-amino acid derived esters, the three-component 1,3-DC takes place under milder reaction conditions giving the corresponding pyrrolizidines and indolizidines with an alkoxycarbonyl group in the bridge adjacent carbon to the nitrogen. This methodology can be carried out by a double consecutive or stepwise 1,3-DC to provide pyrrolizidines via the precursor prolinates. The conformation of the azomethine ylide controls the endo/exo diastereoselectivity of the 1,3-DC.

Keywords: 1,3-dipolar cycloadditions; azomethine ylides; carbonyl compounds; Distinguished Women in Chemistry and Chemical Engineering; electrophilic alkene; iminium ions; indolizidines; multicomponent reactions; pyrrolizidines

References

  • [1]

    C. Bhat, S. G. Tilve. RSC Adv. 4, 5405 (2014).CrossrefGoogle Scholar

  • [2]

    N. Asano, R. J. Nash, R. J. Mdyneux, G. W. J. Fleet. Tetrahedron: Asymmetry 11, 1645 (2000).CrossrefGoogle Scholar

  • [3]

    T. Hashimoto, K. Maruoka. Chem. Rev. 115, 5366 (2015).CrossrefGoogle Scholar

  • [4]

    M. S. Sing, S. Chowdhury, S. Koley. Tetrahedron 72, 1603 (2016).CrossrefGoogle Scholar

  • [5]

    B. Bdiri, B.-J. Zhao, Z.-M. Zhou. Tetrahedron: Asymmetry 28, 876 (2017).CrossrefGoogle Scholar

  • [6]

    H. D. Döndas, M. de G. Retamosa, J. M. Sansano. Synthesis 49, 2819 (2017).CrossrefGoogle Scholar

  • [7]

    R. Grigg, S. Surendrakumar, S. Thianpatanagui, D. Vipond. J. Chem. Soc. Chem. Commun. 47 (1987).Google Scholar

  • [8]

    R. Grigg, J. Idle, P. McMeekin, D. Vipond. J. Chem. Soc. Chem. Commun. 49 (1987).Google Scholar

  • [9]

    R. Grigg, S. Surendrakumar, S. Thianpatanagui, D. Vipond. J. Chem. Soc. Perkin Trans. 1, 2693 (1988).Google Scholar

  • [10]

    R. Grigg, J. Idle, P. McMeekin, S. Surendrakumar, D. Vipond. J. Chem. Soc. Perkin Trans. 1, 2703 (1988).Google Scholar

  • [11]

    F. Orsini, F. Pelizzoni, M. Forte, M. Sisti, F. Merati, P. Gariboldi. J. Heterocyclic Chem. 25, 1605 (1988).Google Scholar

  • [12]

    R. Grigg, M. F. Jones, M. McTiernan, V. Sridharan. Tetrahedron 57, 7979 (2001).CrossrefGoogle Scholar

  • [13]

    J. Azizian, A. R. Karimi, A. A. Mohammadi, M. R. Mohammadizadeh. Synthesis 2263 (2004).Google Scholar

  • [14]

    A. R. S. Babu, R. Raghunathan. Tetrahedron Lett. 47, 9221 (2006).CrossrefGoogle Scholar

  • [15]

    R. D. R. S. Manian, J. Jayashankaran, R. Raghunathan. Tetrahedron 62, 12357 (2006).CrossrefGoogle Scholar

  • [16]

    N. V. Lakshmi, P. Thirumurugan, C. Jayakumar, P. T. Perumal. Synlett 955 (2010).Google Scholar

  • [17]

    P. D. Barman, I. Sanyal, S. B. Mandal, A. K. Banerjee. Synthesis 3563 (2011).Google Scholar

  • [18]

    R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriram. Tetrahedron 64, 2962 (2008).CrossrefGoogle Scholar

  • [19]

    A. R. S. Babu, R. Raghunathan. Tetrahedron Lett. 48, 305 (2007).CrossrefGoogle Scholar

  • [20]

    G. Chen, J. Zhang, V. Wu. Res. Chem. Intermed. 38, 413 (2012).CrossrefGoogle Scholar

  • [21]

    V. Y. Korotaev, I. B. Kutyashev, A. Y. Barkov, V. Y. Sosnovskikh. Chem. Heterocyclic Comp. 53, 1192 (2017).CrossrefGoogle Scholar

  • [22]

    J. Jayashankaran, R. D. R. S. Manian, R. Raghunathan. Tetrahedron Lett. 45, 7303 (2004).CrossrefGoogle Scholar

  • [23]

    A. R. S. Babu, R. Raghunathan. Tetrahedron Lett. 48, 6809 (2007).CrossrefGoogle Scholar

  • [24]

    J. N. S. Rao, R. Raghunathan. Tetrahedron Lett. 53, 854 (2012).CrossrefGoogle Scholar

  • [25]

    J. N. S. Rao, R. Raghunathan. Tetrahedron Lett. 56, 2276 (2015).CrossrefGoogle Scholar

  • [26]

    V. Rajkumar, N. A. Aslam, C. Reddy, S. A. Babu. Synlett 23, 549 (2012).CrossrefGoogle Scholar

  • [27]

    M. Bakthadoss, D. Kannan, G. Sivakumar. Synthesis 44, 793 (2012).CrossrefGoogle Scholar

  • [28]

    J.-A. Xiao, H.-G. Zhang, S. Liang, J.-W. Ren, H. Yang, X.-Q. Chen. J. Org. Chem. 78, 1157 (2013).CrossrefGoogle Scholar

  • [29]

    C. E. Puerto Galvis, V. V. Kouznetsov. Org. Biomol. Chem. 11, 7372 (2013).CrossrefGoogle Scholar

  • [30]

    G. Wu, L. Ouyang, J. Liu, S. Zeng, W. Huang, B. Han, F. Wu, G. He, M. Xiang. Mol. Divers. 17, 271 (2013).CrossrefGoogle Scholar

  • [31]

    J. Li, J. Wang, Z. Xu, S. Zhu. ACS Comb. Sci. 16, 506 (2014).CrossrefGoogle Scholar

  • [32]

    T. L. Pavlovskaya, F. G. Yarementko, V. V. Lipson, S. V. Shishkina, O. V. Shishkin, V. I. Musatov, A. S. Karpenko. Beilstein J. Org. Chem. 10, 117 (2014).CrossrefGoogle Scholar

  • [33]

    G. Li, M. Wu, F. Liu, J. Jiang. Synthesis 47, 3783 (2015).CrossrefGoogle Scholar

  • [34]

    A. Hazra, P. Paira, K. B. Sahu, S. Naskar, P. Saha, R. Paira, S. Mondal, A. Maity, P. Luger, M. Weber, N. B. Mondal, S. Banerjee. Tetrahedron Lett. 51, 1585 (2010).CrossrefGoogle Scholar

  • [35]

    F. Felluga, C. Forzato, P. Nitti, G. Pitacco, E. Valentin, E. Zangrando. J. Heterocyclic Chem. 47, 664 (2010).Google Scholar

  • [36]

    G. Li, H. Wu, D. Kong, R. Liu, X. Zhou, F. Liu. New J. Chem. 38, 3350 (2014).CrossrefGoogle Scholar

  • [37]

    Y. Toma, M. Kunigami, K. Watanabe, M. Higashi. J. Fluor. Chem. 189, 22 (2016).CrossrefGoogle Scholar

  • [38]

    B. Gayen, A. Banerji, K. Dhara. Synth. Commun. 46, 293 (2016).CrossrefGoogle Scholar

  • [39]

    K. B. Manjappa, Y.-T. Peng, W.-F. Jhang, D.-Y. Yang. Tetrahedron 72, 853 (2016).CrossrefGoogle Scholar

  • [40]

    Z.-Y. Mao, Y.-W. Liu, P. Han, H.-Q. Dong, C.-M. Si, B.-G. Wei, G.-Q. Lin. Org. Lett. 20, 1090 (2018).CrossrefGoogle Scholar

  • [41]

    U. Obst, V. Gramlich, F. Diederich, L. Weber, D. W. Banner. Angew. Chem. Int. Ed. 34, 1739 (1995).CrossrefGoogle Scholar

  • [42]

    U. Obst, D. W. Banner, L. Weber, F. Diederich. Chem. Biol. 4, 287 (1997).CrossrefGoogle Scholar

  • [43]

    U. Obst, P. Betschmann, C. Lerner, P. Seiler, F. Diederich. Helv. Chim. Acta 83, 855 (2000).CrossrefGoogle Scholar

  • [44]

    P. Betschmann, S. Sahli, F. Diederich. Helv. Chim. Acta 85, 1210 (2002).CrossrefGoogle Scholar

  • [45]

    K. Schärer, M. Morgenthaler, P. Seiler, F. Diederich. Helv. Chim. Acta 87, 2517 (2004).CrossrefGoogle Scholar

  • [46]

    E. Schweizer, A. Hoffmann-Röder, K. Schärer, J. A. Olsen, C. Fäh, P. Seiler, U. Obst-Sander, B. Wagner, M. Kansy, F. Diederich. ChemMedChem 1, 611 (2006).CrossrefGoogle Scholar

  • [47]

    L. M. Castelló, C. Nájera, J. M. Sansano, O. Larrañaga, A. de Cózar, F. P. Cossío. Adv. Synth. Catal. 356, 3861 (2014).CrossrefGoogle Scholar

  • [48]

    E. García-Mingüens. C. Nájera, J. M. Sansano. Lett. Org. Chem. 15, 431 (2018).CrossrefGoogle Scholar

  • [49]

    J. Hunter, C. M. Pask, V. Sridharan. Tetrahedron Lett. 57, 2774 (2016).CrossrefGoogle Scholar

  • [50]

    K. Zhao, S.-L. Zhu, D.-Q. Shi, X.-P. Xu, S.-J. Ji. Synthesis 1793 (2010).Google Scholar

  • [51]

    M. Joucla, J. Mortier, J. Hamelin. Tetrahedron Lett. 26, 2775 (1985).CrossrefGoogle Scholar

  • [52]

    T. Sengupta, S. Khamarui, S. Samanta, D. K. Maiti. Chem. Commun. 49, 9962 (2013).CrossrefGoogle Scholar

  • [53]

    J. Mancebo-Aracil, C. Nájera, J. M. Sansano. Chem. Commun. 49, 11218 (2013).CrossrefGoogle Scholar

  • [54]

    J. Mancebo-Aracil, C. Nájera, L. M. Castelló, J. M. Sansano, O. Larrañaga, A. de Cózar, F. P. Cossío. Tetrahedron 71, 9645 (2015).CrossrefGoogle Scholar

  • [55]

    P. Cui, L. Xu, Z. Shi, L. Gan. J. Org. Chem. 76, 4210 (2011).CrossrefGoogle Scholar

  • [56]

    Q. Lu, G. Song, J. P. Jasinski, A. C. Keeley, W. Zhang. Green Chem. 14, 3010 (2012).CrossrefGoogle Scholar

  • [57]

    A. D. Lim, J. A. Codelli, S. E. Reisman. Chem. Sci. 4, 650 (2013).CrossrefGoogle Scholar

  • [58]

    C. Chen, X. D. Li, S. L. Schreiber. J. Am. Chem. Soc. 125, 10174 (2003).CrossrefGoogle Scholar

  • [59]

    V. Selva, O. Larrañaga, L. M. Castelló, C. Nájera, J. M. Sansano, A. de Cózar. J. Org. Chem. 82, 6298 (2017).CrossrefGoogle Scholar

  • [60]

    L. M. Castelló, C. Nájera, J. M. Sansano, O. Larrañaga, A. de Cózar, F. P. Cossío. Org. Lett. 15, 2902 (2013).CrossrefGoogle Scholar

  • [61]

    L. M. Castelló, C. Nájera, J. M. Sansano, O. Larrañaga, A. de Cózar, F. P. Cossío. Synthesis 47, 934 (2015).CrossrefGoogle Scholar

  • [62]

    S. K. Ray, R. J. Biswas, A. Suneja, M. M. Sadhu, V. K. Sing. J. Org. Chem. 83, 2293 (2018).CrossrefGoogle Scholar

  • [63]

    I. Coldham, S. Jana, L. Watson, C. D. Pilgram. Tetrahedron Lett. 49, 5408 (2008).CrossrefGoogle Scholar

  • [64]

    M. F. Aly, H. Ardill, R. Grigg, S. Leong-Ling, S. Rajviroongit, S. Surendrakumar. Tetrahedron Lett. 28, 6077 (1987).CrossrefGoogle Scholar

  • [65]

    L. M. Castelló, V. Selva, C. Nájera, J. M. Sansano. Synthesis 49, 299 (2017).Google Scholar

  • [66]

    I. Coldham, S. Jana, L. Watson, N. G. Martín. Org. Biomol. Chem. 7, 1674 (2009).CrossrefGoogle Scholar

  • [67]

    R. Grigg, Z. Rankovic, M. Thorton-Pett, A. Somasunderam. Tetrahedron 49, 8679 (1993).CrossrefGoogle Scholar

  • [68]

    S. Mantenutu, A. Cayuelas, G. Favi, O. A. Attanasi, F. Mantellini, C. Nájera, J. M. Sansano. Eur. J. Org. Chem. 4144 (2016).Google Scholar

About the article

Published Online: 2018-10-17

Published in Print: 2019-04-24


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 4, Pages 575–596, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0710.

Export Citation

©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in