Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 5

Issues

Group 6 metal carbonyl complexes of cyclo-(P5Ph5)

Divine Mbom YufanyiORCID iD: https://orcid.org/0000-0001-8889-611X
  • Corresponding author
  • Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
  • Department of Chemistry, The University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
  • orcid.org/0000-0001-8889-611X
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Toni GrellORCID iD: https://orcid.org/0000-0001-9162-6487 / Menyhárt-Botond SárosiORCID iD: https://orcid.org/0000-0003-4222-0717 / Peter LönneckeORCID iD: https://orcid.org/0000-0003-1335-0897 / Evamarie Hey-HawkinsORCID iD: https://orcid.org/0000-0003-4267-0603
Published Online: 2019-01-10 | DOI: https://doi.org/10.1515/pac-2018-0905

Abstract

Group 6 metal (Cr, Mo, W) carbonyl complexes react with cyclo-(P5Ph5) to afford the phosphorus-rich complexes [Cr(CO)5{cyclo-(P5Ph5)-κP1}] (1), [{Cr(CO)5}2{μ-cyclo-(P5Ph5)-κP1,P3}] (2), [M(CO)4{cyclo-(P5Ph5)-κP1,P3}] (with M=Cr (3), Mo (4), W (exo-5, endo-5)) depending on the reaction conditions. Complexes 1–5 were characterised by 31P{1H} NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. The cyclopentaphosphane remains intact and acts as monodentate (1), bridging (2) or bidentate (3–5) ligand. Compounds exo-5 and endo-5 are configurational isomers and essentially differ in the orientations adopted by the phenyl rings attached to the uncoordinated phosphorus atoms. The 31P{1H} NMR spectra show five multiplets for an ABCDE spin system. Theoretical calculations showed that exo-5 and endo-5 are practically isoenergetic, which is in good agreement with the observed equilibrium in solution between exo-5 and endo-5. The thermal properties of the complexes have also been evaluated.

This article offers supplementary material which is provided at the end of the article.

Keywords: density functional calculations; group 6 carbonyls; ICPC-22; P ligands; phosphorus; thermolysis

Article note

A collection of invited papers based on presentations at the 22nd International Conference on Phosphorous Chemistry (ICPC-22) held in Budapest, Hungary, 8–13 July 2018.

References

  • [1]

    S. Gomez-Ruiz, E. Hey-Hawkins. Coord. Chem. Rev. 255, 1360 (2011).CrossrefGoogle Scholar

  • [2]

    L. R. Smith, J. L. Mills. J. Chem. Soc. Chem. Commun. 808 (1974).Google Scholar

  • [3]

    L. R. Smith, J. L. Mills. J. Am. Chem. Soc. 98, 3852 (1976).CrossrefGoogle Scholar

  • [4]

    M. Baudler, J. Hahn, E. Clef. Z. Naturforsch. B: Chem. Sci. 39, 438 (1984).CrossrefGoogle Scholar

  • [5]

    J. Borm, G. Huttner, O. Orama. J. Organomet. Chem. 306, 29 (1986).CrossrefGoogle Scholar

  • [6]

    M. Baudler, B. Carlsohn, B. Kloth, D. Koch. Z. Anorg. Allg. Chem. 432, 67 (1977).CrossrefGoogle Scholar

  • [7]

    M. Baudler, C. Pinner, C. Gruner, J. Hellmann, M. Schwamborn, B. Kloth. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 32B, 1244 (1977).Google Scholar

  • [8]

    M. Baudler, G. Fuerstenberg, H. Suchomel, J. Hahn. Z. Anorg. Allg. Chem. 498, 57 (1983).CrossrefGoogle Scholar

  • [9]

    M. Baudler, C. Gruner. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 31B, 1311 (1976).Google Scholar

  • [10]

    M. Baudler, J. Hahn, H. Dietsch, G. Fuerstenberg. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 31B, 1305 (1976).Google Scholar

  • [11]

    J. R. Goerlich, R. Schmutzler. Z. Anorg. Allg. Chem. 620, 173 (1994).CrossrefGoogle Scholar

  • [12]

    A. Schisler, P. Loennecke, T. Gelbrich, E. Hey-Hawkins. Dalton Trans. 2895 (2004).Google Scholar

  • [13]

    C. J. Spencer, W. N. Lipscomb. Acta Crystallogr. 14, 250 (1961).CrossrefGoogle Scholar

  • [14]

    J. P. Albrand, J. B. Robert. J. Chem. Soc. Chem. Commun. 644 (1974).Google Scholar

  • [15]

    S. Gómez-Ruiz, R. Frank, B. Gallego, S. Zahn, B. Kirchner, E. Hey-Hawkins. Eur. J. Inorg. Chem. 2011, 739 (2011).CrossrefGoogle Scholar

  • [16]

    M. Baudler, K. Glinka. Chem. Rev. 93, 1623 (1993).CrossrefGoogle Scholar

  • [17]

    K. F. Tebbe. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. C40, 1552 (1984).Google Scholar

  • [18]

    H. Zimmermann, M. Gomm, E. Koeck, J. Ellermann. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. C44, 48 (1988).Google Scholar

  • [19]

    D. Fenske, H. Schottmueller. Z. Anorg. Allg. Chem. 624, 443 (1998).CrossrefGoogle Scholar

  • [20]

    A. M. Hinke, A. Hinke, W. Kuchen. Z. Naturforsch. B: Chem. Sci. 43, 280 (1988).CrossrefGoogle Scholar

  • [21]

    G. Huttner, H. D. Mueller, A. Frank, H. Lorenz. Angew. Chem. 87, 597 (1975).CrossrefGoogle Scholar

  • [22]

    M. Baudler, F. Salzer, J. Hahn. Z. Naturforsch. B: Anorg. Chem. Org. Chem. 37B, 1529 (1982).Google Scholar

  • [23]

    R. A. Bartlett, H. V. R. Dias, K. M. Flynn, H. Hope, B. D. Murray, M. M. Olmstead, P. P. Power. J. Am. Chem. Soc. 109, 5693 (1987).CrossrefGoogle Scholar

  • [24]

    N. H. T. Huy, Y. Inubushi, L. Ricard, F. Mathey. Organometallics 16, 2506 (1997).CrossrefGoogle Scholar

  • [25]

    N. H. T. Huy, Y. Lu, F. Mathey. Organometallics 30, 1734 (2011).CrossrefGoogle Scholar

  • [26]

    V. Naseri, R. J. Less, R. E. Mulvey, M. McPartlin, D. S. Wright. Chem. Commun. 46, 5000 (2010).CrossrefGoogle Scholar

  • [27]

    A. Deeg, H. Wunderlich. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. C54, i, IUC9800054 (1998).Google Scholar

  • [28]

    M. A. Bush, V. R. Cook, P. Woodward. Chem. Commun. 630 (1967).Google Scholar

  • [29]

    P. S. Elmes, B. M. Gatehouse, B. O. West. J. Organomet. Chem. 82, 235 (1974).CrossrefGoogle Scholar

  • [30]

    M. Scherer, D. Stein, F. Breher, J. Geier, H. Schoenberg, H. Gruetzmacher. Z. Anorg. Allg. Chem. 631, 2770 (2005).CrossrefGoogle Scholar

  • [31]

    J. Queisser, D. Fenske. Z. Anorg. Allg. Chem. 620, 58 (1994).CrossrefGoogle Scholar

  • [32]

    G. Fritz, H.-W. Schneider, W. Hnle, H. G. V. Schnering. Z. Anorg. Allg. Chem. 585, 51 (1990).CrossrefGoogle Scholar

  • [33]

    G. Fritz, H.-W. Schneider, W. Hoenle, H. G. von Schnering. Z. Anorg. Allg. Chem. 584, 21 (1990).CrossrefGoogle Scholar

  • [34]

    G. Fritz, M. Jarmer, E. Matern. Z. Anorg. Allg. Chem. 589, 23 (1990).CrossrefGoogle Scholar

  • [35]

    H.-G. Ang, L.-L. Koh, Q. Zhang. J. Chem. Soc. Dalton Trans. 2757 (1995).Google Scholar

  • [36]

    H. Wunderlich. Z. Kristallogr. 210, 889 (1995).Google Scholar

  • [37]

    H. Wunderlich. Z. Kristallogr. 210, 632 (1995).Google Scholar

  • [38]

    H.-G. Ang, S.-G. Ang, Q. Zhang. J. Chem. Soc. Dalton Trans. 3843 (1996).Google Scholar

  • [39]

    H.-G. Ang, S.-G. Ang, W.-L. Kwik, Q. Zhang. J. Organomet. Chem. 485, C10 (1995).CrossrefGoogle Scholar

  • [40]

    S. J. Geier, D. W. Stephan. Chem. Commun. 2779 (2008).Google Scholar

  • [41]

    H.-G. Ang, S.-G. Ang, Q. Zhang. J. Chem. Soc. Dalton Trans. 2773 (1996).Google Scholar

  • [42]

    H. G. Ang, J. S. Shannon, B. O. West. Chem. Commun. 10 (1965).Google Scholar

  • [43]

    H. G. Ang, B. O. West. Aust. J. Chem. 20, 1133 (1967).CrossrefGoogle Scholar

  • [44]

    C. S. Cundy, M. Green, F. G. A. Stone, A. Taunton-Rigby. J. Chem. Soc. A 1776 (1968).CrossrefGoogle Scholar

  • [45]

    M. A. Bush, P. Woodward. J. Chem. Soc. A 1221 (1968).CrossrefGoogle Scholar

  • [46]

    A. K. Akdag, P. Lönnecke, E. Hey-Hawkins. Z. Anorg. Allg. Chem. 640, 271 (2014).CrossrefGoogle Scholar

  • [47]

    A. Kircali, R. Frank, S. Gómez-Ruiz, B. Kirchner, E. Hey-Hawkins. ChemPlusChem 77, 341 (2012).CrossrefGoogle Scholar

  • [48]

    D. E. C. Corbridge. The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, London (1974).Google Scholar

  • [49]

    A. Schisler, P. Lonnecke, U. Huniar, R. Ahlrichs, E. Hey-Hawkins. Angew. Chem. Int. Ed. 40, 4216 (2001).Google Scholar

  • [50]

    J. P. Albrand, D. Gagnaire, J. B. Robert. J. Am. Chem. Soc. 95, 6498 (1973).CrossrefGoogle Scholar

  • [51]

    J. J. Daly. J. Chem. Soc. 6147 (1964).CrossrefGoogle Scholar

  • [52]

    S. Gomez-Ruiz, A. Schisler, P. Loennecke, E. Hey-Hawkins. Chem. Eur. J. 13, 7974 (2007).CrossrefGoogle Scholar

  • [53]

    S. Burck, D. Gudat, M. Nieger. Angew. Chem. Int. Ed. 46, 2919 (2007).CrossrefGoogle Scholar

  • [54]

    M. A. Alvarez, M. E. Garcia, D. Garcia-Vivo, R. Lozano, A. Ramos, M. A. Ruiz. Inorg. Chem. 53, 11261 (2014).CrossrefGoogle Scholar

  • [55]

    R. Wolf, M. Finger, C. Limburg, A. C. Willis, S. B. Wild, E. Hey-Hawkins. Dalton Trans. 831 (2006).Google Scholar

  • [56]

    J.-C. Hierso, A. Fihri, V. V. Ivanov, B. Hanquet, N. Pirio, B. Donnadieu, B. Rebière, R. Amardeil, P. Meunier. J. Am. Chem. Soc. 126, 11077 (2004).CrossrefGoogle Scholar

  • [57]

    J.-C. Hierso. Chem. Rev. 114, 4838 (2014).CrossrefGoogle Scholar

  • [58]

    B. Kesanli, S. P. Mattamana, J. Danis, B. Eichhorn. Inorg. Chim. Acta 358, 3145 (2005).CrossrefGoogle Scholar

  • [59]

    F. A. Cotton, C. S. Kraihanzel. J. Am. Chem. Soc. 84, 4432 (1962).CrossrefGoogle Scholar

  • [60]

    G. W. A. Fowles, D. K. Jenkins. Chem. Commun. 61 (1965).Google Scholar

  • [61]

    F. B. Ogilvie, R. L. Keiter, G. Wulfsberg, J. G. Verkade. Inorg. Chem. 8, 2346 (1969).CrossrefGoogle Scholar

  • [62]

    L. E. Orgel. Inorg. Chem. 1, 25 (1962).CrossrefGoogle Scholar

  • [63]

    G. Johannsen, O. Stelzer, E. Unger. Chem. Ber. 108, 1259 (1975).CrossrefGoogle Scholar

  • [64]

    Kirk Marat, SPINWORKS (University of Manitoba Manitoba, Canada, 2010).Google Scholar

  • [65]

    D. P. Tate, W. R. Knipple, J. M. Augl. Inorg. Chem. 1, 433 (1962).CrossrefGoogle Scholar

  • [66]

    J. J. Eisch, B. R. King. Organometallic Syntheses. Transition-metal Compounds, Academic Press, New York, London (1965).Google Scholar

  • [67]

    F. Neese. WIREs Comput. Mol. Sci. 2, 73 (2012).CrossrefGoogle Scholar

  • [68]

    A. D. Becke. Phys. Rev. A 38, 3098 (1988).CrossrefGoogle Scholar

  • [69]

    J. P. Perdew. Phys. Rev. B 33, 8822 (1986).CrossrefGoogle Scholar

  • [70]

    D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese. J. Chem. Theory Comput. 4, 908 (2008).CrossrefGoogle Scholar

  • [71]

    K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs. Chem. Phys. Lett. 240, 283 (1995).CrossrefGoogle Scholar

  • [72]

    K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs. Theor. Chim. Acta 97, 119 (1997).CrossrefGoogle Scholar

  • [73]

    S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010).CrossrefGoogle Scholar

  • [74]

    S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 32, 1456 (2011).CrossrefGoogle Scholar

  • [75]

    A. D. Becke. J. Chem. Phys. 98, 5648 (1993).CrossrefGoogle Scholar

  • [76]

    E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin. J. Comput. Chem. 25, 1605 (2004).CrossrefGoogle Scholar

  • [77]

    CrysAlis Pro: (Oxford Diffraction Ltd., 2014).Google Scholar

  • [78]

    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli. J. Appl. Crystallogr. 27, 435 (1994).Google Scholar

  • [79]

    G. M. Sheldrick. Acta Cryst. C 71, 3 (2015).CrossrefGoogle Scholar

  • [80]

    G. M. Sheldrick. Acta Cryst. A 71, 3 (2015).CrossrefGoogle Scholar

  • [81]

    C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek. J. Appl. Crystallogr. 39, 453 (2006).CrossrefGoogle Scholar

About the article

Published Online: 2019-01-10

Published in Print: 2019-05-27


Funding Source: Studienstiftung des Deutschen Volkes

Award identifier / Grant number: T.G.

Support from the Alexander von Humboldt Foundation, Funder Id: 10.13039/100005156 (Georg Forster Research Fellowship for postdoctoral researchers for D.M.Y.), the Studienstiftung des deutschen Volkes, Funder Id: 10.13039/501100004350 (doctoral grant for T.G.) and the Graduate School BuildMoNa is gratefully acknowledged.


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 5, Pages 785–796, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0905.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Toni Grell and Evamarie Hey‐Hawkins
Chemistry – A European Journal, 2019

Comments (0)

Please log in or register to comment.
Log in