Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 6

Issues

Piezo-electrets from polypropylene composites doped with mineral fillers

Halina Kaczmarek
  • Corresponding author
  • Chair of Polymer Chemistry and Photochemistry, Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Gagarina St. 7, 87-100 Toruń, Poland, Tel.: +48 56 6114312
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Chylińska
  • Polymer Chemistry and Photochemistry, Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Gagarina St. 7, 87-100 Toruń, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa Klimiec
  • Department of Microelectronics, Institute of Electron Technology – Kraków Division, Zabłocie St. 39, 30-701 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogusław Królikowski
  • Institute for Engineering of Polymer Materials and Dyes – Toruń Division, M. Skłodowskiej-Curie St. 5., 87-100 Toruń, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Sionkowski
  • Polymer Chemistry and Photochemistry, Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Gagarina St. 7, 87-100 Toruń, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Machnik
  • Department of Microelectronics, Institute of Electron Technology – Kraków Division, Zabłocie St. 39, 30-701 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-21 | DOI: https://doi.org/10.1515/pac-2018-0702

Abstract

PP-based composites with two mineral fillers (perlite or glass beads) were manufactured by extrusion, and then subjected to orientation in a ratio of 3:1. Electrets were obtained in the polarization process under the influence of a constant electric field. Sample morphology was tested by SEM whereas the crystallinity was determined by XRD. Mechanical strength and thermal stability of composites was studied by tensile tests and thermogravimetric analysis, respectively. The piezoelectric characteristics were appointed by measurement of the electrical charge and current voltage in the polarized samples. The dependence of thermally stimulated depolarized current (TSDC) on temperature was also investigated. The piezoelectric coefficient (d33), the electret stability over time as well as activation energy of depolarization process have been determined. It was found that low filler content (i.e. 2.5 and 5 wt.% of glass beads and perlite, respectively) significantly improve piezoelectric properties of isotactic polypropylene (i-PP).

Keywords: crystallinity; isotactic polypropylene; mechanical strength; morphology; piezoelectric properties; POC-17; polymer composites; thermal stability

Article note

A collection of papers presented at the 17th Polymers and Organic Chemistry (POC-17) conference held 4–7 June 2018 in Palvas Les Flots (Montpellier), France.

References

  • [1]

    J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115, 2559 (2015).CrossrefGoogle Scholar

  • [2]

    K. Uchino (ed.). Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing Limited, Oxford (2010).Google Scholar

  • [3]

    E. Fukuda. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47, 1277 (2000).CrossrefGoogle Scholar

  • [4]

    G. M. Sessler. J. Electrostat. 51–52, 137 (2001).Google Scholar

  • [5]

    J. E. Mark (ed.). Physical Properties of Polymers Handbook, Springer Science & Business Media, New York (2007).Google Scholar

  • [6]

    K. S. Ramadan, D. Sameoto, S. Evoy. Smart Mater. Struct. 23, 033001 (2014).CrossrefGoogle Scholar

  • [7]

    S. Banerjee, K. A. Cook-Chennault, W. Du, U. Sundar, H. Halim, A. Tang. Smart Mater. Struct. 25, 115018 (2016).CrossrefGoogle Scholar

  • [8]

    E. Klimiec, K. Zaraska, W. Zaraska. Adv. Appl. Ceram. 19, 152 (2010).Google Scholar

  • [9]

    E. Klimiec, K. Zaraska, W. Zaraska, S. Kuczyński. MAE-Appl. Mech. Mater. 110–116, 1245 (2012).Google Scholar

  • [10]

    Y. Quan, H. Li, S. Yan. Ind. Eng. Chem. Res. 52, 4772 (2013).CrossrefGoogle Scholar

  • [11]

    A. Mellinger, M. Wegener, W. Wirges, R. Mallepally. Ferroelectrics 331, 189 (2006).CrossrefGoogle Scholar

  • [12]

    A. Qaiss, H. Saidi, O. Fassi-Fehri, M. Bousmina. Polym. Eng. Sci. 52, 2637 (2012).CrossrefGoogle Scholar

  • [13]

    A. Khan, Z. Abas, H. S. Kim, I.-K. Oh. Smart Mater. Struct. 25, 053002 (2016).CrossrefGoogle Scholar

  • [14]

    A. Mohebbi, F. Mighri, A. Ajji, D. Rodrigue. Adv. Polym. Technol. 2016, 44577.Google Scholar

  • [15]

    M. Lindner, S. Bauer-Gogonea, S. Bauer. J. Appl. Phys. 91, 5283 (2002).CrossrefGoogle Scholar

  • [16]

    C. Baur, D. J. Apo, D. Maurya, S. Priya, W. Voit. Advances in Piezoelectric Polymer Composites for Vibrational Energy Harvesting, Chapter 1, ACS Symposium Series, pp. 1–27. American Chemical Society, Washington, DC (2014).Google Scholar

  • [17]

    S. Bauer, F. Bauer. Piezoelectric Polymers and Their Applications, Piezoelectricity, Springer Series in Materials Science (SSMATERIALS, vol. 114), Chapter 6, pp. 157–177. Springer-Verlag, Berlin, Heidelberg (2008).Google Scholar

  • [18]

    H. Peng, X. Sun, W. Weng, X. Fang. Polymer Materials for Energy and Electronic Applications, Academic Press, Elsevier, London (2017).Google Scholar

  • [19]

    G. Ortega-Brana, P. Llovera-Segovia, M. Domínguez-Lagunilla, Alfredo Quijano-Lopez. J. Electrostat. 88, 94 (2017).CrossrefGoogle Scholar

  • [20]

    J. Hillenbrand, G. M. Sessler. IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000).CrossrefGoogle Scholar

  • [21]

    V. N. Kestelman, L. S. Pinchuk, V. A. Goldade. Electrets in Engineering. Fundamentals and Applications, Springer Science+Business Media, New York (2010).Google Scholar

  • [22]

    M. Sborikas, Joao L. Ealo, M. Wegener. Sens. Actuators A 225, 41 (2015).CrossrefGoogle Scholar

  • [23]

    A. Kilic, E. Shim, B. Yeol Yeom, B. Pourdeyhimi. J. Electrostat. 71, 41 (2013).CrossrefGoogle Scholar

  • [24]

    H. Gilbert-Tremblay, F. Mighri, D. Rodrigue. J. Cell. Plast. 48, 291 (2012).CrossrefGoogle Scholar

  • [25]

    Z. An, M. Zhao, J. Yao, Y. Zhang, Z. Xia. Appl. Phys. A 95, 801 (2009).Google Scholar

  • [26]

    E. Klimiec, B. Królikowski, M. Machnik, W. Zaraska, J. Dzwonkowski. J. Electron. Mater. 44, 2283 (2015).CrossrefGoogle Scholar

  • [27]

    H. Kaczmarek, B. Królikowski, E. Klimiec, J. Kowalonek. J. Mater. Sci.: Mater. Electron. 28, 6435 (2017).Google Scholar

  • [28]

    H. Kaczmarek, B. Królikowski, E. Klimiec, D. Bajer. Polimery 62, 743 (2017).CrossrefGoogle Scholar

  • [29]

    Z. Frąszczak, B. Królikowski, A. Buchelt. Przem. Chem. 92, 1000 (2013).Google Scholar

  • [30]

    Z. Frąszczak, B. Królikowski, A. Buchelt. Przem. Chem. 93, 1000 (2014).Google Scholar

  • [31]

    P. Łukowski. Materials 9, 839 (2016).CrossrefGoogle Scholar

  • [32]

    https://www.perlite.org (access May 29, 2017).

  • [33]

    J. Z. Liang, R. K. Y. Li. Polym. Compos. 19, 698 (1998).CrossrefGoogle Scholar

  • [34]

    J. Z. Liang, F. H. Li. Polym. Test. 25, 527 (2006).CrossrefGoogle Scholar

  • [35]

    J. Z. Liang, R. K. Y. Li, S. C. Tjong. Polym. Test. 19, 213 (2000).CrossrefGoogle Scholar

  • [36]

    J. G. Kovacs, B. Solymossy. Polym. Eng. Sci. 49, 2218 (2009).CrossrefGoogle Scholar

  • [37]

    https://(www.yumpu.com/en/document/view/7180532/mintron-7tm-product-data-sheet-rocktron (access May 29, 2017).

  • [38]

    A. Aji, K. C. Cole. “Orientation characterization in polypropylene”, in Polypropylene: An A-Z Reference, J. Karger-Kocsis (Ed.), Kluwer Publishers, Dordrecht (1999).Google Scholar

  • [39]

    B. Wang, H.-X. Huang. Polym. Degrad. Stab. 98, 1601 (2013).CrossrefGoogle Scholar

  • [40]

    R. Androsch, M. L. Di Lorenzo, C. Schick, B. Wunderlich. Polymer 51, 4639 (2010).CrossrefGoogle Scholar

  • [41]

    K. Czaja. Poliolefiny, WNT, Warszawa (2005).Google Scholar

  • [42]

    Z. Yao, M. Xia, L. Ge, T. Chen, H. Li, Y. Ye, H. Zheng. Fiber. Polym. 15, 1278 (2014).CrossrefGoogle Scholar

  • [43]

    M. Canetti, F. Betini, A. De Chirico, G. Audisio. Polym. Degrad. Stab. 91, 494 (2006).CrossrefGoogle Scholar

  • [44]

    J. Golebiewski, A. Galeski. Compos. Sci. Technol. 67, 3442 (2007).CrossrefGoogle Scholar

  • [45]

    Z. Gao, T. Kaneko, I. Amasaki, M. Nakada. Polym. Degrad. Stab. 80, 269 (2003).CrossrefGoogle Scholar

  • [46]

    J. Zhu, H. Gu, S. B. Rapole, Z. Luo, S. Pallavkar, N. Haldolaarachchige, T. J. Benson, T. C. Ho, J. Hopper, D. P. Young, S. Wei, Z. Guo. RSC Adv. 2, 4844 (2012).CrossrefGoogle Scholar

  • [47]

    O. G. Vendik. Appl. Phys. Lett. 73, 37 (1998).CrossrefGoogle Scholar

  • [48]

    S. Berger. Trends Vac. Sci. Tech. 6, 1 (2004).Google Scholar

  • [49]

    K. C. Yung, B. L. Zhu, C. S. Xie. J. Appl. Polym. Sci. 116, 225 (2010).CrossrefGoogle Scholar

  • [50]

    M. Q. Zhang, M. Z. Rong, W. H. Ruan. “Nanoparticles/Polymer Composites: Fabrication and Mechanical Properties”, Chapter 3, in Nano- and MicroMechanics of Polymer Blends and Composites, J. Karger-Kocsis, S. Fakirov, (Eds.), pp. 93–140, Hanser Publishers, Munich (2009).Google Scholar

  • [51]

    K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. E. Sanz, J. M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid. Nanomaterials (Basel) 7, 74 (2017).CrossrefGoogle Scholar

  • [52]

    H. Ha, S. C. Kim, K. Ha, Macromol. Res. 8, 512 (2010).Google Scholar

About the article

Published Online: 2019-05-21

Published in Print: 2019-06-26


Funding Source: National Science Centre, Poland, Narodowe Centrum Nauki

Award identifier / Grant number: 2015/17/B/ST8/03396

This research was supported by the National Science Centre, Poland, Narodowe Centrum Nauki, Funder Id: http://dx.doi.org/10.13039/501100004281 (grant no. 2015/17/B/ST8/03396). The authors thank Mr. Andrzej Cichocki (ITE, Kraków) for the measurements of piezoelectric properties.


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 6, Pages 967–982, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0702.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marcin Masłowski, Justyna Miedzianowska, and Krzysztof Strzelec
Journal of Bionic Engineering, 2019, Volume 16, Number 6, Page 1127
[2]
Halina Kaczmarek, Marta Chylińska, Bogusław Królikowski, Ewa Klimiec, Dagmara Bajer, and Jolanta Kowalonek
Journal of Materials Science: Materials in Electronics, 2019
[3]
Halina Kaczmarek, Bogusław Królikowski, Marta Chylińska, Ewa Klimiec, and Dagmara Bajer
Polymers, 2019, Volume 11, Number 8, Page 1345

Comments (0)

Please log in or register to comment.
Log in