Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 91, Issue 6

Issues

Structure and dynamics of glass-forming alloy melts investigated by application of levitation techniques

Dirk Holland-Moritz
  • Corresponding author
  • Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedikt Nowak
  • Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fan Yang
  • Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Meyer
  • Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-03 | DOI: https://doi.org/10.1515/pac-2018-0907

Abstract

In this work results of studies on the short-range order and on the atomic dynamics in different stable and undercooled glass-forming metallic melts are reviewed. In order to undercool the melts deeply below the melting temperature and to avoid chemical reactions of the melts with crucible materials, the samples are containerlessly processed utilizing the electromagnetic or the electrostatic levitation technique. The short-range structure of the melts is studied by neutron diffraction, while the atomic dynamics are investigated by quasielastic neutron scattering. The relationship between short-range structure and atomic dynamics is discussed within the mode coupling theory of the glass transition. We will show that taking the time- and space-averaged structural information provided by measured partial structure factors as an input, mode coupling theory is able to explain the experimental results concerning the activation energies for self-diffusion and the coupling/decoupling behavior of the self-diffusion coefficients of the different alloy components.

Keywords: atomic dynamics; containerless processing; HTMC-XVI; short-range order

Article note

A collection of invited papers based on presentations at the 16th International IUPAC Conference on High Temperature Chemistry (HTMC-XVI), held in Ekaterinburg, Russia, July 2–6, 2018.

References

  • [1]

    D. Turnbull. J. Appl. Phys. 21, 1022 (1950).CrossrefGoogle Scholar

  • [2]

    D. M. Herlach, P. Galenko, D. Holland-Moritz. Metastable Solids from Undercooled Melts, R. W. Cahn (Ed.), Pergamon Materials Series, Elsevier, Oxford (2007).Google Scholar

  • [3]

    M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi. Acta Mater. 57, 941 (2009).CrossrefGoogle Scholar

  • [4]

    W. Götze. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Vol. 143, Oxford University Press (2008).Google Scholar

  • [5]

    F. C. Frank. Proc. Roy. Soc. London A215, 43 (1952).Google Scholar

  • [6]

    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D. M. Herlach. Phys. Rev. Lett. 89, 075507 (2002).CrossrefGoogle Scholar

  • [7]

    G. W. Lee, A. K. Gangopadhyay, K. F. Kelton, R. W. Hyers, T. J. Rathz, J. R. Rogers, D. S. Robinson. Phys. Rev. Lett. 93, 037802 (2004).CrossrefGoogle Scholar

  • [8]

    D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, F. Funakoshi, J. M. Merino, T. Buslaps, S. Reutzel. J. Non-Cryst. Sol. 312–314, 47 (2002).Google Scholar

  • [9]

    T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert, D. M. Herlach. Europhys. Lett. 65, 34 (2004).CrossrefGoogle Scholar

  • [10]

    D. Holland-Moritz, O. Heinen, R. Bellissent, T. Schenk, D. M. Herlach. Int. J. Mat. Res. 97, 947 (2006).Google Scholar

  • [11]

    H. W. Sheng, W. K. Luo, F. M. Alagir, J. M. Bai, E. Ma. Nature 439, 419 (2006).CrossrefGoogle Scholar

  • [12]

    S. G. Hao, M. J. Kramer, C. Z. Wang, K. M. Ho, S. Nandi, A. Kreyssig, A. I. Goldman, V. Wessels, K. K. Sahu, K. F. Kelton, R. W. Hyers, S. M. Canepari, J. R. Rogers. Phys. Rev. B 79, 104206 (2009).CrossrefGoogle Scholar

  • [13]

    V. Wessels, A. K. Gangopadhyay, K. K. Sahu, R. W. Hyers, S. M. Canepari, J. R. Rogers, M. J. Kramer, A. I. Goldman, D. Robinson, J. W. Lee, J. R. Morris, K. F. Kelton. Phys. Rev. B 83, 094116 (2011).CrossrefGoogle Scholar

  • [14]

    D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer. Phys. Rev. B 79, 064204 (2009).CrossrefGoogle Scholar

  • [15]

    A. Mizuno, T. Kaneko, S. Matsumura, M. Watanabe, S. Kohara, M. Takata. Mat. Sci. Forum 561–565, 1349 (2007).Google Scholar

  • [16]

    Q. Y. Cheng, E. Ma. Progress Mat. Sci. 56, 379 (2011).CrossrefGoogle Scholar

  • [17]

    Y. Q. Cheng, H. W. Sheng, E. Ma. Phys. Rev. B 78, 014207 (2008).CrossrefGoogle Scholar

  • [18]

    L. Huang, C. Z. Wang, K. M. Ho. Phys. Rev. B 83, 184103 (2011).CrossrefGoogle Scholar

  • [19]

    S. G. Hao, C. Z. Wang, M. J. Kramer, K. M. Ho. J. Appl. Phys. 107, 053511 (2010).CrossrefGoogle Scholar

  • [20]

    L. Huang, C. Z. Wang, S. G. Hao, M. J. Kramer, K. M. Ho. PRB 81, 014108 (2010).CrossrefGoogle Scholar

  • [21]

    N. Jakse, A. Pasturel. Phys. Rev. B 78, 214204 (2008).CrossrefGoogle Scholar

  • [22]

    A. Griesche, M.-P. Macht, G. Frohberg. J. Non-Cryst. Solids 353, 3305 (2007).CrossrefGoogle Scholar

  • [23]

    A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh. Phys. Rev. B 77, 092201 (2008).CrossrefGoogle Scholar

  • [24]

    D. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht, A. L. Greer. Int. Mater. Rev. 38, 273 (1993).CrossrefGoogle Scholar

  • [25]

    D. L. Price. High-Temperature Levitated Materials, Cambridge University Press, Cambridge (2010).Google Scholar

  • [26]

    P.-F. Paradis, T. Ishikawa, G.-W. Lee, D. Holland-Moritz, J. Brillo, W.-K. Rhim, J. T. Okada. Mat. Sci. Eng. R 76, 1 (2014).CrossrefGoogle Scholar

  • [27]

    D. Holland-Moritz, T. Schenk, P. Convert, T. Hansen, D. M. Herlach. Meas. Sci. Technol. 16, 372 (2005).CrossrefGoogle Scholar

  • [28]

    L. Hennet, D. Holland-Moritz, R. Weber, A. Meyer. High-temperature levitated materials, in Neutron Scattering: Applications in Biology, Chemistry and Materials Sciences, F. Fernandez-Alonso, D. L. Price (Eds.), pp. 583, Academic Press, London (2017).Google Scholar

  • [29]

    T. Kordel, D. Holland-Moritz, F. Yang, J. Peters, T. Unruh, T. Hansen, A. Meyer. Phys. Rev. B 83, 104205 (2011).CrossrefGoogle Scholar

  • [30]

    T. Meister, H. Werner, G. Lohöfer, D. Herlach, H. Unbehauen. Contr. Eng. Pract. 11, 117 (2003).CrossrefGoogle Scholar

  • [31]

    T. Unruh, J. Neuhaus, W. Petry. Nucl. Instr. Meth. A 580, 1414 (2007).CrossrefGoogle Scholar

  • [32]

    A. P. Hammersley. ESRF Internal Report, ESRF98HA01T, FIT2D V9.129 Reference Manual V3.1 (1998).Google Scholar

  • [33]

    A. P. Hammersley, S. O. Swensson, M. Hanfland, A. N. Fitch, D. Häusermann. High Pressure Res. 14, 235 (1996).CrossrefGoogle Scholar

  • [34]

    X. Qiu, J. W. Thompson, S. J. L. Billinge. J. Appl. Crystal. 37 678 (2004).CrossrefGoogle Scholar

  • [35]

    D. Holland-Moritz, F. Yang, T. Kordel, S. Klein, F. Kargl, J. Gegner, T. Hansen, J. Bednarçik, I. Kaban, O. Shuleshova, N. Mattern, A. Meyer. EPL 100, 56002 (2012).CrossrefGoogle Scholar

  • [36]

    S. Klein, D. Holland-Moritz, D. M. Herlach, N. A. Mauro, K. F. Kelton. EPL 102, 36001 (2013).CrossrefGoogle Scholar

  • [37]

    P. Nash, C. S. Jayanth. J. Phase Equil. 5, 144 (1984).Google Scholar

  • [38]

    B. Nowak, D. Holland-Moritz, F. Yang, Th. Voigtmann, T. Kordel, T. C. Hansen, A. Meyer. Phys. Rev. Mater. 1, 025603 (2017).CrossrefGoogle Scholar

  • [39]

    A. B. Bhatia, D. E. Thornton. Phys. Rev. B 2, 3004 (1970).CrossrefGoogle Scholar

  • [40]

    T. E. Faber, J. M. Ziman. Phil. Mag. 11, 153 (1965).CrossrefGoogle Scholar

  • [41]

    B. Nowak, D. Holland-Moritz, F. Yang, Th. Voigtmann, Z. Evenson, T. C. Hansen, A. Meyer. PRB 96, 054201 (2017).CrossrefGoogle Scholar

  • [42]

    D. Holland-Moritz, F. Yang, J. Gegner, T. Hansen, M. D. Ruiz-Martín, A. Meyer. J. Appl. Phys. 115, 203509 (2014).CrossrefGoogle Scholar

  • [43]

    C. J. Smithells. Smithells Metals Reference Book, E. A. Brandes (Ed.), Butterworths, London (1983).Google Scholar

  • [44]

    P. Heintzmann, F. Yang, S. Schneider, G. Lohöfer, A. Meyer. Appl. Phys. Lett. 108, 241908 (2016).CrossrefGoogle Scholar

  • [45]

    V. Simonet, F. Hippert, H. Klein, M. Audier, R. Bellissent, H. Fischer, A. P. Murani, D. Boursier. Phys. Rev. B 58, 6273 (1998).CrossrefGoogle Scholar

  • [46]

    V. Simonet, F. Hippert, M. Audier, R. Bellissent. Phys. Rev. B 65, 024203 (2001).CrossrefGoogle Scholar

  • [47]

    J. P. Hansen, I. R. McDonald. Theory of Simple Liquids, Academic, London (1976).Google Scholar

  • [48]

    J. P. Boon, S. Yip. Molecular Hydrodynamics, McGraw-Hill, New York (1980).Google Scholar

  • [49]

    D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, A. Meyer. J. Phys. Conf. Ser. 144, 012119 (2009).CrossrefGoogle Scholar

  • [50]

    A. Meyer, W. Petry, M. Koza, and M.-P. Macht. Appl. Phys. Lett. 83, 3894 (2003).CrossrefGoogle Scholar

  • [51]

    F. Yang, T. Unruh, A. Meyer. EPL 107, 26001 (2014).CrossrefGoogle Scholar

  • [52]

    S. W. Basuki, F. Yang, E. Gill, K. Rätzke, A. Meyer, F. Faupel. Phys. Rev. B 95, 024301 (2017).CrossrefGoogle Scholar

  • [53]

    T. Voigtmann, A. Meyer, D. Holland-Moritz, S. Stüber, T. Hansen, T. Unruh. Europhys. Lett. 82, 66001 (2008).CrossrefGoogle Scholar

  • [54]

    Y. Takahara, N. Narita. Mat. Trans. 45, 1172 (2004).CrossrefGoogle Scholar

  • [55]

    S. W. Basuki, A. Bartsch, F. Yang, K. Rätzke, A. Meyer, F. Faupel. Phys. Rev. Lett. 113, 165901 (2014).CrossrefGoogle Scholar

About the article

Published Online: 2019-04-03

Published in Print: 2019-06-26


Citation Information: Pure and Applied Chemistry, Volume 91, Issue 6, Pages 895–910, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2018-0907.

Export Citation

©2019 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Comments (0)

Please log in or register to comment.
Log in